Tag Archives: excavator hydraulic cylinder

China Standard Wholesale Price Forklift Dump Trailer Excavator Bulldozer Mining Machinery Loader Telescopic Single Acting Multi-Stage Hydraulic Cylinder Manufacturer in China vacuum pump and compressor

Product Description

Solutions Provider of Hydraulic Cylinder

Product Description

As the professional manufacturer of hydraulic cylinder in China, we can offer you custom products to fulfill every requirement for the hydraulic cylinder market.

-Customized Sizes
-Customized Colors
-Customized Designs
-Customized Packages
-More Requirements Available

The objectives of our business are to provide high quality products and services at a cost effective price. 

 

 

Seal

Parker, Merkel, NOK, Hallite,etc.

  Helps Links

  To get a free sample, please click here
  To contact our sales team, please click here
  To review our catalogs, please click here
  To find more products, please click here

Paint

Red, Grey, Yellow, Black, etc.

Material

ST52, CK45, 4140, Duplex2205,
Stainless Steel 304/316, etc.

Certificate

ABS, Lloyds, SGS, etc.

Core components

Bearing, Pressure vessel, Pump

Non-standard

Yes

Structure

Piston Type, Plunger Type, Telescopic Type

Power

Hydraulic & Pneumatic

Brand

Guoyue

Sample

Available

Contact the experts at Guoyue today for all your cylinder requirements.

Our Advantages

We have many advantages that will help a lot to your business, including but not limited to:
 

1. Equipped with State-of-the-art Production Lines

Guoyue has introduced and absorbed advanced hydraulic design and production technologies from European (such as German) and American countries, ensuring that its design and manufacturing capabilities are consistently aligned with international advanced hydraulic cylinder technology.

2. Strict QC Process Before Shipping

The company emphasizes strict quality control, with each production process following standardized operating procedures, and comprehensive management systems in place to ensure that every product is processed to perfection.

3. Success in Many Projects

We have served clients with a diverse range of cylinder requirements, including construction projects, waste management, food industry, mining, infrastructure repairs, metal production, marine, agriculture, oil & gas and more applications.

4. Professional Support in Design, Samples and Bulk Order

As we have our own factories, the more benefits you can get from us:

—–We can get the production done based on the designs, reference pictures, even your drafts.
—–There is no limit of minimum order quantity, and we never refuse the small order, even 1 unit.
—–We can offer you the free samples to check if you buy it in large quantites.

 

Successful Projects

As the leader in custom hydraulic cylinder design and manufacturing, we have been successful in lot of projects, including 

  • Aerospace industry: Particularly for such devices as landing gears and CHINAMFG flaps
  • Aerial Work Platforms (AWP)
  • Agricultural: Small spraying equipment as well as harvesters, loaders and tractors
  • Automotive
  • Civil Engineering: Bulldozers, excavators, trenchers as well as attachments
  • Construction: Concrete pumps and paving applications
  • Energy: Flow controls for water gates
  • Food, production and manufacturing
  • Forestry and logging
  • Motorway repairs and maintenance
  • Mining
  • Materials handling: Single acting hydraulic cylinders for sale are commonly employed in such equipment
  • Mechanical engineering: Operation for feeding devices as well as automated production lines, plastic forming machines and transportation devices
  • Oil and gas industries
  • Recycling plants: Compressing scrap metal and other materials
  • Shipbuilding: Steering devices

Company Profile

Guoyue Hydraulic Equipment Manufacturing (ZheJiang ) Co., Ltd., is a high-technology enterprise that integrates research, design, development, production, operation, and service, specializing in the production of hydraulic cylinders, including single acting cylinders, double acting Cylinders, nested cylinders, rotating cylinder, low height cylinders, high tonnage cylinders, tie-rod cylinders and more.

With a registered capital of 50 million Chinese Yuan, the company covers an area of 10, 000 sqft, with more than 100 employees. Also, certified with ISO 9001/ISO 14001/ISO 45001 and many own patents, our products have been approved by clients all over the world, including USA, Europe, Middle East, Middle Asia, Southeast Asia and more countries & areas.

As the leader in custom hydraulic cylinder design and manufacturing, Guoyue serves Original Equipment Manufacturers (OEMs) with custom and innovative hydraulic cylinder solutions. The team at Guoyue liaises closely with each customer to engineer and produce cylinders for machinery, equipment or projects that incorporate cylinders into their hydraulic systems.

We work directly with engineers, business owners, procurement teams, project managers, and technical specialists who often require a custom approach to their cylinder specifications – in terms of fit, function, and overall performance.

Also, Guoyue has introduced and absorbed advanced hydraulic product design and production technologies from Germany and other European and American countries, ensuring that its design and manufacturing capabilities are consistently aligned with international advanced hydraulic cylinder technology.

We have served clients with a diverse range of cylinder requirements. We have extensive experience working within many industries and the unique needs of each – including construction projects, waste management, food Industry, mining, infrastructure repairs, metal production, marine, agriculture, oil & gas and more applications.

Guoyue employees are at the heart of our operations. It is through the dedication of our team at Guoyue that we can consistently deliver the exact services and products required by every client.

Contact the experts at Guoyue today for all your cylinder requirements.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: GS, RoHS, CE, ISO9001
Pressure: Low/Medium/High Pressure
Work Temperature: Low/Medium/High Temperature
Acting Way: Single/Double Acting
Working Method: Rotary/Straight Trip
Adjusted Form: Switch/Regulated Type
Customization:
Available

|

forklift hydraulic cylinder

How Does a Forklift Hydraulic Cylinder Handle Variations in Temperature?

A forklift hydraulic cylinder is designed to handle variations in temperature effectively to ensure reliable and consistent performance. The hydraulic system, including the cylinder, is engineered to withstand both high and low temperatures commonly encountered in different operating environments. Here’s a detailed explanation of how a forklift hydraulic cylinder handles variations in temperature:

  1. Temperature-Resistant Seals:
  2. Hydraulic cylinders in forklifts are equipped with seals that are specifically designed to withstand temperature fluctuations. These seals are made from high-quality materials such as synthetic rubber or thermoplastic elastomers that have excellent resistance to heat and cold. The temperature-resistant seals ensure proper sealing and prevent leakage of hydraulic fluid, even when exposed to extreme temperature conditions.

  3. Hydraulic Fluid Selection:
  4. The choice of hydraulic fluid plays a crucial role in temperature management within the hydraulic system, including the cylinder. Different types of hydraulic fluids are available, each with specific temperature ranges for optimal performance. Forklift manufacturers typically recommend hydraulic fluids that are suitable for the expected operating temperatures. These fluids have properties that enable them to maintain consistent viscosity and lubrication characteristics, ensuring smooth cylinder operation across a wide temperature range.

  5. Thermal Expansion Compensation:
  6. Variations in temperature cause materials to expand or contract. Hydraulic cylinders are designed to accommodate the thermal expansion of components effectively. The materials used in the cylinder construction, such as steel or aluminum alloys, have specific coefficients of thermal expansion. By considering these properties during the design and manufacturing process, forklift hydraulic cylinders are built to compensate for thermal expansion, minimizing the risk of structural damage or performance issues due to temperature changes.

  7. Heat Dissipation and Cooling:
  8. In high-temperature environments, forklift hydraulic cylinders may be exposed to heat generated by the hydraulic system or external sources. To prevent overheating, cylinders are often equipped with cooling mechanisms. These mechanisms can include cooling fins or external cooling systems that help dissipate heat and maintain the cylinder within the desired temperature range. Effective heat dissipation ensures that the hydraulic fluid retains its optimal properties and that the cylinder operates efficiently and reliably.

  9. Cold Start Considerations:
  10. In low-temperature conditions, such as during cold starts, hydraulic cylinders may experience increased viscosity of the hydraulic fluid, which can affect their performance. To mitigate this issue, forklift hydraulic systems are designed with features such as preheating systems or low-temperature hydraulic fluids. These measures help to warm up the hydraulic fluid and ensure its proper flow and lubrication, allowing the hydraulic cylinder to operate smoothly even in cold environments.

  11. Insulation and Protective Measures:
  12. In extreme temperature conditions, additional insulation or protective measures may be applied to the hydraulic cylinder and its components. Insulation materials can help maintain stable operating temperatures within the cylinder, preventing heat loss in cold environments or minimizing heat absorption in hot environments. Protective coatings or covers may also be used to shield the cylinder from external temperature fluctuations or exposure to harsh elements, ensuring its longevity and performance.

By incorporating temperature-resistant seals, selecting suitable hydraulic fluids, compensating for thermal expansion, implementing heat dissipation mechanisms, considering cold start conditions, and applying insulation or protective measures, forklift hydraulic cylinders are designed to handle variations in temperature effectively. These design considerations ensure the reliable and consistent operation of the hydraulic system, enabling forklifts to perform optimally in diverse temperature environments.

forklift hydraulic cylinder

How does a forklift hydraulic cylinder contribute to smooth lifting and lowering?

A forklift hydraulic cylinder plays a crucial role in achieving smooth lifting and lowering operations. Here’s an explanation of how it contributes to this process:

The smooth lifting and lowering of a forklift’s load is made possible by the hydraulic cylinder working in tandem with the hydraulic system. The hydraulic cylinder contributes in the following ways:

1. Controlled Fluid Power:

The hydraulic cylinder utilizes controlled fluid power to lift and lower the load. When the operator activates the hydraulic system, hydraulic fluid is pumped into the cylinder, exerting pressure on the piston inside. This pressure creates a force that raises or lowers the load smoothly and evenly.

2. Piston and Cylinder Design:

The design of the hydraulic cylinder’s piston and cylinder bore contributes to smooth lifting and lowering. The piston is precisely machined to fit within the cylinder bore with minimal clearance. This tight fit, along with the use of seals and hydraulic fluid, helps minimize friction and ensure smooth movement of the piston within the cylinder.

3. Valve Control:

The hydraulic cylinder’s movement is controlled by valves in the hydraulic system. These valves regulate the flow of hydraulic fluid into and out of the cylinder. By adjusting the valve settings, the operator can control the speed and rate of lifting and lowering. The valves allow for precise control, enabling smooth and gradual movements of the load.

4. Load Balancing:

The hydraulic cylinder contributes to load balancing during lifting and lowering operations. By adjusting the extension or retraction of the cylinder, the operator can maintain a proper balance between the load and the forklift. This balance helps prevent sudden shifts or jerky movements, resulting in smoother and more stable lifting and lowering.

5. Damper Mechanisms:

In some forklift hydraulic systems, dampers or shock absorbers are incorporated to further enhance smooth lifting and lowering. These mechanisms help cushion the movements of the hydraulic cylinder, reducing any sudden jolts or vibrations. The dampers absorb and dissipate energy, resulting in smoother and more controlled load handling.

In summary, a forklift hydraulic cylinder contributes to smooth lifting and lowering operations through controlled fluid power, precise piston and cylinder design, valve control, load balancing, and the potential inclusion of dampers. These factors work together to provide operators with the ability to lift and lower loads smoothly, efficiently, and with enhanced control.

forklift hydraulic cylinder

How does a forklift hydraulic cylinder assist in lifting loads?

A forklift hydraulic cylinder plays a critical role in assisting the lifting of loads. Here’s a detailed explanation of how it works:

When a forklift needs to lift a load, the hydraulic cylinder generates the necessary force to raise the load to the desired height. Here’s a step-by-step process of how the hydraulic cylinder assists in lifting loads:

1. Hydraulic Pressure:

When the operator activates the hydraulic controls of the forklift, hydraulic pressure is generated in the hydraulic system. This pressure is typically created by a hydraulic pump, which pressurizes the hydraulic fluid (usually oil) in the system.

2. Hydraulic Fluid Flow:

The pressurized hydraulic fluid is directed to the hydraulic cylinder through control valves and hoses. The fluid enters the cylinder through the inlet port, filling one side of the cylinder.

3. Piston and Piston Rod Extension:

As the pressurized hydraulic fluid enters the cylinder, it acts on one side of the piston. The force exerted by the fluid pushes the piston and the connected piston rod upward.

4. Load Lifting:

As the piston rod extends, it transfers the force to the load-bearing structure of the forklift, such as the mast assembly. The force exerted by the hydraulic cylinder enables the forklift to lift the load off the ground.

5. Load Stability:

The hydraulic cylinder assists in maintaining load stability during the lifting process. The controlled extension of the cylinder allows for smooth and precise lifting, reducing the chances of load tilting or instability.

6. Load Holding:

Once the load reaches the desired height, the hydraulic system can hold the load in place using a valve or a locking mechanism. This ensures that the load remains securely lifted until the operator decides to lower it.

The hydraulic cylinder’s ability to generate a significant amount of force allows forklifts to lift heavy loads efficiently. By controlling the flow of hydraulic fluid and adjusting the cylinder’s extension, the operator can precisely control the lifting speed and height.

In summary, a forklift hydraulic cylinder assists in lifting loads by utilizing hydraulic pressure to extend the piston and piston rod, transferring force to the load-bearing structure of the forklift. This hydraulic force enables the forklift to lift heavy loads, and the controlled extension of the cylinder ensures load stability and precise lifting capabilities.

China Standard Wholesale Price Forklift Dump Trailer Excavator Bulldozer Mining Machinery Loader Telescopic Single Acting Multi-Stage Hydraulic Cylinder Manufacturer in China   vacuum pump and compressor	China Standard Wholesale Price Forklift Dump Trailer Excavator Bulldozer Mining Machinery Loader Telescopic Single Acting Multi-Stage Hydraulic Cylinder Manufacturer in China   vacuum pump and compressor
editor by Dream 2024-05-15

China Best Sales Excavator Parts Bucket Arm Boom Hydraulic Cylinder Hydraulic Cylinder for Excavators vacuum pump

Product Description

Excavator Hydraulic Cylinder Arm Boom Bucket Cylinder For famous brand excavator
Part number Tube dia  mm Rod dia  mm Stroke  mm
205-63-57100 120 85 1285
206-63-57100 120 85 1285
205-63-57160 120 85 1285
205-63-57120   135 95 1490
203-63-57130 125 85 1120
203-63-57131 125 85 1120
205-63-57130 125 85 1120

Specifications
1.Supply to USA,Europe,and Australia, Russia.
2.Material:Stainless Steel
3.Professional performance excavator parts supplier
4. High quality and low price

FAQ

Q1: Are you Manufacture or Trade Company?
A1: We are manufacture,we have 20 years experience for supply Metal material and products in domestic.

Q2: How can we guarantee quality?
A2: Always a pre-production sample before mass production;Always final Inspection before shipment;

Q3: What is your terms of payment ?
A3: 1.T/T: 30% deposit in advance, the balance 70% paid before shipment
2.30% down payment, the balance 70% paid against L/C at sight
3.CHINAMFG negotiation

Q4: Can you provide Certificates for aluminum materials ?
A4:Yes,we can supply MTC-Material Test Certificate.

Q5: Can you provide sample?
A5: Yes, we can provide you sample, but you need to pay for the sample and freight firstly. We will return the sample fee after
you make an order.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: GS, RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Piston Cylinder
Adjusted Form: Switching Type
Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle variations in temperature and harsh operating environments?

Hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating specific features and materials that ensure their durability, reliability, and performance. The ability of hydraulic cylinders to withstand extreme temperatures, corrosive environments, and other harsh conditions is crucial for their successful operation in a wide range of applications. Here’s a detailed explanation of how hydraulic cylinders handle variations in temperature and harsh operating environments:

1. Temperature Range:

– Hydraulic cylinders are designed to operate within a specified temperature range. The materials used in their construction, such as cylinder barrels, pistons, seals, and lubricants, are selected to withstand the anticipated temperature variations. Specialized seals and O-rings made from materials like nitrile, Viton, or polyurethane are used to maintain their sealing properties over a wide temperature range. Heat-resistant coatings or thermal insulation may be applied to certain components to protect them from high temperatures.

2. Thermal Expansion:

– Hydraulic cylinders are designed to accommodate thermal expansion and contraction that occurs with temperature changes. The materials used in their construction have different coefficients of thermal expansion, allowing the cylinder components to expand or contract at a similar rate. This design consideration prevents excessive stress, binding, or leakage that could result from thermal expansion or contraction.

3. Heat Dissipation:

– In applications where hydraulic cylinders are subjected to high temperatures, heat dissipation mechanisms are employed to prevent overheating. Cooling fins or heat sinks may be incorporated into the cylinder design to increase the surface area for heat transfer. In some cases, external cooling methods such as air or liquid cooling systems can be used to maintain optimal operating temperatures.

4. Corrosion Resistance:

– Hydraulic cylinders used in harsh operating environments are constructed from materials that exhibit excellent corrosion resistance. Stainless steel, chrome-plated steel, or other corrosion-resistant alloys are commonly used for cylinder components exposed to corrosive substances or environments. Additionally, surface treatments such as coatings, plating, or specialized paints can provide an extra layer of protection against corrosion.

5. Sealing Systems:

– Hydraulic cylinders employ sealing systems that are specifically designed to withstand harsh operating environments. The seals used in hydraulic cylinders are selected based on their resistance to temperature extremes, chemicals, abrasion, and other environmental factors. Specialized seal designs, such as wiper seals, rod seals, or high-temperature seals, are utilized to maintain effective sealing and prevent contamination of the hydraulic fluid.

6. Lubrication:

– Proper lubrication is essential for the smooth operation and longevity of hydraulic cylinders, particularly in harsh operating environments. Lubricants are selected based on their ability to withstand high temperatures, resist oxidation, and provide effective lubrication under extreme conditions. Regular maintenance and lubrication practices ensure that the cylinder components continue to operate smoothly and reduce the effects of wear and friction.

7. Robust Construction:

– Hydraulic cylinders designed for harsh operating environments are built with robust construction techniques to withstand the rigors of such conditions. The cylinder barrels, rods, and other components are manufactured to meet strict quality and durability standards. Welded or bolted construction methods are employed to ensure the structural integrity of the cylinders. Reinforcements, such as flanges or tie rods, may be added to enhance the cylinder’s strength and resistance to external forces.

8. Environmental Protection:

– Hydraulic cylinders can be equipped with additional protective features to shield them from harsh operating environments. Protective covers, boots, or bellows can be used to prevent contaminants, debris, or moisture from entering the cylinder and compromising its performance. These protective measures help extend the service life of hydraulic cylinders in demanding conditions.

9. Compliance with Standards:

– Hydraulic cylinders manufactured for specific industries or applications often comply with industry standards or regulations related to operating temperature ranges, environmental conditions, or safety requirements. Compliance with these standards ensures that hydraulic cylinders are designed and tested to meet the specific demands of their intended operating environments.

In summary, hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating suitable materials, thermal expansion considerations, heat dissipation mechanisms, corrosion-resistant components, specialized sealing systems, proper lubrication, robust construction techniques, protective features, and compliance with industry standards. These design considerations and features enable hydraulic cylinders to operate reliably and effectively in a wide range of demanding applications and environmental conditions.

hydraulic cylinder

Impact of Hydraulic Cylinders on Overall Productivity of Manufacturing Operations

Hydraulic cylinders play a crucial role in enhancing the overall productivity of manufacturing operations. These versatile devices are widely used in various industrial applications due to their ability to generate powerful and controlled linear motion. Let’s explore how hydraulic cylinders impact the overall productivity of manufacturing operations:

  1. Powerful Force Generation: Hydraulic cylinders are capable of generating high forces, which enables them to handle heavy loads and perform demanding tasks. By providing the necessary force, hydraulic cylinders facilitate efficient and effective operation of machinery and equipment in manufacturing processes. This ability to exert substantial force contributes to increased productivity by enabling the handling of larger workpieces, enhancing process efficiency, and reducing manual labor requirements.
  2. Precision and Control: Hydraulic cylinders offer precise control over the movement of loads, allowing for accurate positioning, alignment, and repetitive tasks. The smooth and controlled linear motion provided by hydraulic cylinders ensures precise operation in manufacturing processes, such as assembly, material handling, and machining. This precision and control minimize errors, rework, and scrap, leading to improved productivity and higher-quality output.
  3. Speed and Efficiency: Hydraulic cylinders can operate at high speeds, enabling rapid movement and cycle times in manufacturing operations. The combination of high force and speed allows for faster operation of machinery and equipment, reducing production cycle times and increasing overall throughput. By optimizing the speed and efficiency of manufacturing processes, hydraulic cylinders contribute to improved productivity and output.
  4. Flexibility and Adaptability: Hydraulic cylinders are highly flexible and adaptable to different manufacturing applications. They can be customized to meet specific requirements, such as load capacity, stroke length, and mounting options. This versatility allows hydraulic cylinders to be integrated into a wide range of machinery and equipment, accommodating diverse manufacturing needs. The ability to adapt to different tasks and environments enhances overall productivity by enabling efficient utilization of resources and facilitating process optimization.
  5. Reliability and Durability: Hydraulic cylinders are known for their robustness and durability, making them suitable for demanding manufacturing environments. Their ability to withstand heavy loads, repeated use, and harsh operating conditions ensures reliable performance over extended periods. Minimizing downtime due to cylinder failure or maintenance requirements contributes to increased productivity and uninterrupted manufacturing operations.

In summary, hydraulic cylinders have a significant impact on the overall productivity of manufacturing operations. Their powerful force generation, precision and control, speed and efficiency, flexibility and adaptability, as well as reliability and durability, contribute to optimized processes, increased throughput, improved quality, and reduced labor requirements. By leveraging the capabilities of hydraulic cylinders, manufacturers can enhance productivity, streamline operations, and achieve greater efficiency in their manufacturing processes.

hydraulic cylinder

How do hydraulic cylinders handle variations in load, pressure, and speed?

Hydraulic cylinders are designed to handle variations in load, pressure, and speed effectively. They incorporate features and components that allow them to adapt to changing operating conditions and maintain optimal performance. Here’s a detailed explanation of how hydraulic cylinders handle variations in load, pressure, and speed:

Variations in Load:

– Hydraulic cylinders are capable of handling variations in load by adjusting the force they exert. The force output of a hydraulic cylinder is determined by the hydraulic pressure and the surface area of the piston. When the load increases, the pressure in the hydraulic system can be adjusted to generate a higher force. This adjustment can be achieved by regulating the flow of hydraulic fluid into the cylinder using control valves. By controlling the pressure and flow, hydraulic cylinders can adapt to different load requirements, ensuring that the force applied is sufficient to handle the load while preventing excessive force that could cause damage.

Variations in Pressure:

– Hydraulic cylinders are designed to handle variations in pressure within the hydraulic system. They are equipped with seals and other components that can withstand high-pressure conditions. When the pressure within the hydraulic system fluctuates, the hydraulic cylinder adjusts accordingly to maintain its performance. The seals prevent fluid leakage and ensure that the hydraulic pressure is effectively transmitted to the piston, allowing the cylinder to generate the required force. Additionally, hydraulic systems often incorporate pressure relief valves and other safety mechanisms to protect the cylinder and the entire system from overpressure conditions.

Variations in Speed:

– Hydraulic cylinders can handle variations in speed through the control of hydraulic fluid flow. The speed of a hydraulic cylinder’s extension or retraction is determined by the rate at which hydraulic fluid enters or exits the cylinder. By adjusting the flow rate using flow control valves, the speed of the cylinder’s movement can be regulated. This allows for precise control over the speed, enabling operators to adapt to varying speed requirements based on the specific task or load. Furthermore, hydraulic systems can incorporate flow control valves with adjustable orifice sizes to fine-tune the speed of the cylinder’s movement.

Load-Sensing Technology:

– Advanced hydraulic systems may incorporate load-sensing technology to further enhance the ability of hydraulic cylinders to handle variations in load, pressure, and speed. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This technology ensures that the hydraulic cylinder provides the necessary force while optimizing energy efficiency. Load-sensing systems are particularly beneficial in applications where the load requirements can vary significantly, allowing hydraulic cylinders to adapt in real-time and maintain precise control over force and speed.

Accumulators:

– Hydraulic systems can also utilize accumulators to assist in handling variations in load, pressure, and speed. Accumulators store hydraulic fluid under pressure, which can be released when needed to supplement the flow and pressure in the system. When there are sudden increases in load or pressure demands, accumulators can provide additional fluid to the hydraulic cylinder, ensuring smooth operation and preventing pressure drops. Similarly, accumulators can assist in maintaining consistent speed by compensating for fluctuations in flow rate. They act as a supplemental energy source, helping hydraulic cylinders respond effectively to variations in operating conditions.

In summary, hydraulic cylinders handle variations in load, pressure, and speed through various mechanisms and components. They can adjust the force output to accommodate different load requirements by regulating hydraulic pressure. The seals and components within hydraulic cylinders allow them to withstand variations in pressure within the hydraulic system. By controlling the flow of hydraulic fluid, hydraulic cylinders can regulate the speed of their movement. Advanced technologies such as load-sensing systems and the use of accumulators further enhance the adaptability of hydraulic cylinders to changing operating conditions. These features and mechanisms enable hydraulic cylinders to maintain optimal performance and provide reliable force and motion control in a wide range of applications.

China Best Sales Excavator Parts Bucket Arm Boom Hydraulic Cylinder Hydraulic Cylinder for Excavators   vacuum pump	China Best Sales Excavator Parts Bucket Arm Boom Hydraulic Cylinder Hydraulic Cylinder for Excavators   vacuum pump
editor by CX 2024-03-12

China Standard Excavator Hydraulic Cylinder Bucket Cylinder for Excavator vacuum pump booster

Product Description

Product Description

This product is a high-quality item originating from the factory itself. It is crafted using specific steel and exquisite hot die forging technology. The optimized heat treatment and quenching processes ensure precise dimensions, high strength, and a long lifespan for the product.

Every detail of the product showcases the superior quality of the materials and the CHINAMFG of the craftsmanship. We offer a one-stop shopping experience that includes quality assurance, durability, and lightning-fast delivery. Packaging options for the product include a cardboard box or a wooden box.

This product is a testament to the perfect blend of quality materials and skilled workmanship.

FAQ

  1. Are you a trader or a manufacturer?
    We are an integrated industrial and trade enterprise.
  2. How can I determine if the part is suitable for my excavator?
    Please provide us with the correct model number/machine serial number/any part numbers. Alternatively, measure the parts and provide us with dimensions or drawings.
  3. Payment terms, how are they structured?
    We typically accept T/T (Telegraphic Transfer) or L/C (Letter of Credit). Other terms can be negotiated as well.
  4. What is your minimum order quantity?
    It depends on what you are buying. Generally, we do not have a minimum order quantity requirement.
  5. “What time is your delivery time?”
    If the factory has no stock: 20 days. If there is any part in stock, our delivery time is only 0-7 days.
  6. Quality control?
    We have a comprehensive quality control system in place, producing perfect products. A dedicated team carefully inspects product quality and specifications, monitoring each step of the production process until packaging is completed, ensuring the safe entry of products into containers.
  7. Can samples be provided?
    For certain products, we can provide free samples, but the customer needs to cover the shipping costs.
  8. Do you have accessories for various brands and models in your company?                                     we can provide you with accessories for various brands and models. You just need to let us know the brand, vehicle make or product model, or the part number.

  
Details information of SHXIHU (WEST LAKE) DIS.I bulldozer undercarriage spare parts

Model  

Track Link

 

Track Roller single

Track Roller double

Top Roller

Idler Xihu (West Lake) Dis. Wheel

 

DH08J0X   8154-MG-421462 8154-MG-42 8154-MG-42 8154-MG-42 8171-MD-39 8171-MD-39 8171-MD-39 8171-MD-39D 8190-ML-4D 8190-ML-4D 8190-ML-4D 8190-ML-4D 8190-ML-4D 8190-ML-4D 8190-ML-4D 8190-ML-4R 8203-RF-43R 8203-RF-43R 8203-RF-43R 8203-RF-43R 8203-RF-43R 8203-RF-43 8203-MJ-39 8203-MJ-39 8203-MJ-42A 8203-MA-42A 8203-MM-42A 8203-MA-42A 8203-MM-42A 8203-MA-42TA 8203-MM-42 8203-MJ-39 8203-MJ-39 8203-MJ-39 8203-MJ-42A 8203-MA-42TA 8203-MM-42A 8203-MA-42TA 8203-MM-42 8203-MJ-39 8203-MJ-39 8203-MJ-39 8203-MJ-39A 8203-MA-42TA 8203-MM-42 8203-MJ-39 8203-MJ-39 8203-MJ-39R 8216-RE-41 8216-MT-41 8216-MT-41 8216-MI-45 8216-MI-45R 8216-RE-41 8216-MT-41 8216-MT-41 8216-MT-41 8154-MG-41 8154-ME-41 8154-MG-41 8154-ME-41 8154-MG-42 8154-MG-42 8171-MD-39 8171-MD-39 8175-MJ-37 8171-MA-43D 8190-ML-38D 8190-ML-38D 8190-ML-38D 8190-ML-38D 8190-ML-38D 8190-ML-38D 8190-ML-38D 8190-ML-4D 8190-ML-38D 8190-ML-38D 8190-ML-4D 8190-ML-4D 8190-ML-4 8203-MJ-37 8203-MJ-37R 8203-RF-37R 8203-RF-37R 8203-RF-37 8203-MJ-37 8203-MJ-39 8203-MJ-39A 8203-MM-42 8203-MJ-37 8203-MJ-37 8203-MJ-37 8203-MJ-42A 8203-MM-42FA 8203-MM-42HA 8203-MM-42A 8203-MM-42 8203-MJ-39 8203-MJ-39 8203-MJ-39 8203-MJ-39 8203-MJ-39 8203-MJ-39A 8203-MM-42 8203-MJ-37 8203-MJ-37A 8203-MM-42FA 8203-MM-42HA 8203-MM-42A 8203-MM-42A 8203-MM-42FA 8203-MM-42HA 8203-MM-42A 8203-MM-42A 8203-MM-42 8203-MJ-42A 8203-MM-42 8203-MJ-37A 8203-MM-42FA 8203-MM-42HA 8203-MM-42 8203-MJ-37R 8203-RF-43R 8203-RF-43A 8203-MM-42 8203-MJ-37R 8203-RF-37R 8203-RF-37A 8203-MM-42 8203-MJ-37R 8203-RF-37R 8203-RF-37 8203-MJ-37 8203-MJ-39 8203-MJ-39 8203-MJ-39 8203-MJ-39A 8203-MM-44FA 8203-MM-44HA 8203-MM-44TA 8203-MM-44A 8203-MM-44FA 8203-MM-44HA 8203-MM-44TA 8203-MM-44TA 8203-MM-44TA 8203-MM-44A 8203-MM-42 8203-MJ-37R 8203-RF-37R 8203-RF-37R 8203-RF-37 8203-MJ-37A 8203-MM-42FA 8203-MM-42HA 8203-MM-42A 8203-MM-42A 8203-MM-42 8203-MJ-42A 8203-MM-42 8203-MJ-37R 8203-RF-37R 8203-RF-37A 8203-MM-44TA 8203-MM-44R 8203-RF-39 8203-MJ-39 8203-MJ-39R 8203-RF-39 8203-MJ-39 8203-MJ-39 8203-MJ-39R 8203-RF-39 8203-MJ-39R 8203-RF-39 8203-MJ-39A 8203-MT-42 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38R 8216-RE-38 8216-MG-38 8216-MG-38 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RE-38 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38R 8216-RE-38 8216-MG-41 8216-MG-41 8216-MG-41 8216-MG-41 8216-MG-41 8216-MG-41 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38R 8216-RE-38 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38R 8216-RE-38 8216-MG-41 8216-MI-45 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38R 8216-RE-38 8216-MI-45 8216-MI-45 8216-MG-38 8216-MG-38 8216-MG-39 8216-MG-39 8216-MG-39 8216-MG-39 8216-MG-39 8216-MG-39 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RH-41 8216-MT-41R 8216-RH-41 8216-MT-41 8216-MT-41 8216-MG-38 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38R 8216-RE-38 8216-MG-41 8216-MG-41 8216-MG-41 8216-MG-38 8216-MG-38R 8216-RE-38R 8216-RE-38 8216-MI-45 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41 8228-MC-41R 8228-RA-41R 8228-RA-41R 8228-RA-41R 8228-RA-41 8228-MC-41BR 8260-RA-41BR 8260-RA-4BR 8260-RA-41BR 8260-RA-41BR 8260-RA-41AR 8280-RB-4AR 8280-RB-4AR 8280-RB-4AR 8317-RB-41000AR 8317-RB-C1000 8317-RB-A2000A 8317-RB-A3000 8317-RB-A4000
               

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 6 Month
Warranty: 6 Month
Type: Excavator Bucket
Application: Excavator
Certification: CE
Condition: New
Samples:
US$ 3123/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders compare to other methods of force generation like electric motors?

Hydraulic cylinders and electric motors are two different methods of force generation with distinct characteristics and applications. While both hydraulic cylinders and electric motors can generate force, they differ in terms of their working principles, performance attributes, and suitability for specific applications. Here’s a detailed comparison of hydraulic cylinders and electric motors:

1. Working Principle:

– Hydraulic Cylinders: Hydraulic cylinders generate force through the conversion of fluid pressure into linear motion. They consist of a cylinder barrel, piston, piston rod, and hydraulic fluid. When pressurized hydraulic fluid enters the cylinder, it pushes against the piston, causing the piston rod to extend or retract, thereby generating linear force.

– Electric Motors: Electric motors generate force through the conversion of electrical energy into rotational motion. They consist of a stator, rotor, and electromagnetic field. When an electrical current is applied to the motor’s windings, it creates a magnetic field that interacts with the rotor, causing it to rotate and generate torque.

2. Force and Power:

– Hydraulic Cylinders: Hydraulic cylinders are known for their high force capabilities. They can generate substantial linear forces, making them suitable for heavy-duty applications that require lifting, pushing, or pulling large loads. Hydraulic systems can provide high force output even at low speeds, allowing for precise control over force application. However, hydraulic systems typically operate at lower speeds compared to electric motors.

– Electric Motors: Electric motors excel in providing high rotational speeds and are commonly used for applications that require rapid motion. While electric motors can generate significant torque, they tend to have lower force output compared to hydraulic cylinders. Electric motors are suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.

3. Control and Precision:

– Hydraulic Cylinders: Hydraulic systems offer excellent control over force, speed, and positioning. By regulating the flow of hydraulic fluid, the force and speed of hydraulic cylinders can be precisely controlled. Hydraulic systems can provide gradual acceleration and deceleration, allowing for smooth and precise movements. This level of control makes hydraulic cylinders well-suited for applications that require precise positioning, such as in industrial automation or construction equipment.

– Electric Motors: Electric motors also offer precise control over speed and positioning. Through motor control techniques such as varying voltage, frequency, or pulse width modulation (PWM), the rotational speed and position of electric motors can be accurately controlled. Electric motors are commonly used in applications that require precise speed control, such as robotics, CNC machines, or servo systems.

4. Efficiency and Energy Consumption:

– Hydraulic Cylinders: Hydraulic systems can be highly efficient, especially when properly sized and designed. However, hydraulic systems typically have higher energy losses due to factors such as fluid leakage, friction, and heat generation. The overall efficiency of a hydraulic system depends on the design, component selection, and maintenance practices. Hydraulic systems require a hydraulic power unit to pressurize the hydraulic fluid, which consumes additional energy.

– Electric Motors: Electric motors can have high efficiency, especially when operated at their optimal operating conditions. Electric motors have lower energy losses compared to hydraulic systems, primarily due to the absence of fluid leakage and lower friction losses. The overall efficiency of an electric motor depends on factors such as motor design, load conditions, and control techniques. Electric motors require an electrical power source, and their energy consumption depends on the motor’s power rating and the duration of operation.

5. Environmental Considerations:

– Hydraulic Cylinders: Hydraulic systems typically use hydraulic fluids that can pose environmental concerns if they leak or are not properly disposed of. The choice of hydraulic fluid can impact factors such as biodegradability, toxicity, and potential environmental hazards. Proper maintenance and leak prevention practices are essential to minimize the environmental impact of hydraulic systems.

– Electric Motors: Electric motors are generally considered more environmentally friendly since they do not require hydraulic fluids. However, the environmental impact of electric motors depends on the source of electricity used to power them. When powered by renewable energy sources, such as solar or wind, electric motors can offer a greener solution compared to hydraulic systems.

6. Application Suitability:

– Hydraulic Cylinders: Hydraulic cylinders are commonly used in applications that require high force output, precise control, and durability. They are widely employed in industries such as construction, manufacturing, mining, and aerospace. Hydraulic systems are well-suited for heavy-duty applications, such as lifting heavy objects, operating heavy machinery, or controlling large-scale movements.

– Electric Motors: Electric motors are widely used in various industries and applications that require rotational motion, speed control, and precise positioning. They are commonly found in appliances, transportation, robotics, HVAC systems, and automation. Electric motorsare suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.In summary, hydraulic cylinders and electric motors have different working principles, force capabilities, control characteristics, efficiency levels, and application suitability. Hydraulic cylinders excel in providing high force output, precise control, and durability, making them ideal for heavy-duty applications. Electric motors, on the other hand, offer high rotational speeds, precise speed control, and are commonly used for applications that involve continuous rotary motion. The choice between hydraulic cylinders and electric motors depends on the specific requirements of the application, including the type of motion, force output, control precision, and environmental considerations.

hydraulic cylinder

What considerations are important when selecting hydraulic cylinders for mobile equipment?

To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:

  1. Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
  2. Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
  3. Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
  4. Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
  5. Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
  6. Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
  7. Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
  8. Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
  9. Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.

hydraulic cylinder

How do hydraulic cylinders ensure precise and controlled movement in equipment?

Hydraulic cylinders are widely used in various equipment and machinery to provide precise and controlled movement. They utilize hydraulic fluid and mechanical components to achieve accurate positioning, smooth operation, and reliable control. Here’s a detailed explanation of how hydraulic cylinders ensure precise and controlled movement in equipment:

1. Hydraulic Principle:

– Hydraulic cylinders operate based on Pascal’s law, which states that pressure exerted on a fluid is transmitted equally in all directions. The hydraulic fluid is contained within the cylinder, and when pressure is applied, it acts on the piston, generating force. By controlling the pressure and flow of hydraulic fluid, the movement of the cylinder can be precisely regulated, allowing for accurate and controlled motion.

2. Force and Load Management:

– Hydraulic cylinders are designed to handle specific loads and forces. The force generated by the hydraulic cylinder depends on the hydraulic pressure and the surface area of the piston. By adjusting the pressure, the force output can be controlled. This allows for precise management of the load and ensures that the cylinder can handle the required force without exerting excessive or insufficient force. Proper load management contributes to the precise and controlled movement of the equipment.

3. Control Valves:

– Control valves play a crucial role in regulating the flow and direction of hydraulic fluid within the cylinder. These valves allow operators to control the extension and retraction of the cylinder, adjust the speed of movement, and stop or hold the cylinder at any desired position. By manipulating the control valves, precise and controlled movement can be achieved, enabling operators to position equipment accurately and perform specific tasks with precision.

4. Flow Control:

– Hydraulic cylinders incorporate flow control valves to manage the rate of hydraulic fluid flow. These valves control the speed of the cylinder’s extension and retraction, allowing for smooth and controlled movement. By adjusting the flow rate, operators can precisely control the speed of the cylinder, ensuring that it moves at the desired rate without sudden or erratic movements. Flow control contributes to the overall precision and control of the equipment’s movement.

5. Position Sensing:

– To ensure precise movement, hydraulic cylinders can be equipped with position sensing devices such as linear transducers or proximity sensors. These sensors provide feedback on the position of the cylinder, allowing for accurate position control and closed-loop control systems. By continuously monitoring the position, the equipment’s movement can be controlled with high accuracy, enabling precise positioning and operation.

6. Proportional Control:

– Advanced hydraulic systems utilize proportional control technology, which allows for precise and fine-tuned control of the hydraulic cylinder’s movement. Proportional valves, often operated by electronic control systems, provide variable flow rates and pressure adjustments. This technology enables precise control of speed, force, and position, resulting in highly accurate and controlled movement of the equipment.

7. Cushioning and Damping:

– Hydraulic cylinders can incorporate cushioning and damping mechanisms to ensure smooth and controlled movement at the end of the stroke. Cushioning features, such as adjustable cushions or shock absorbers, reduce the impact and decelerate the cylinder before reaching the end of the stroke. This prevents abrupt stops and minimizes vibrations, contributing to precise and controlled movement.

8. Load Compensation:

– Some hydraulic systems utilize load compensation mechanisms to maintain precise movement even when the load varies. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This compensation ensures that the equipment’s movement remains accurate and controlled, regardless of changes in the applied load.

In summary, hydraulic cylinders ensure precise and controlled movement in equipment through the application of hydraulic principles, force and load management, control valves, flow control, position sensing, proportional control, cushioning and damping mechanisms, and load compensation. These features and technologies allow operators to achieve accurate positioning, smooth operation, and reliable control, enabling equipment to perform tasks with precision and efficiency. The combination of hydraulic power and careful design considerations ensures that hydraulic cylinders deliver precise and controlled movement in a wide range of industrial applications.

China Standard Excavator Hydraulic Cylinder Bucket Cylinder for Excavator   vacuum pump booster	China Standard Excavator Hydraulic Cylinder Bucket Cylinder for Excavator   vacuum pump booster
editor by CX 2024-02-06

China Good quality Aerial Work Platform Telescopic Excavator Boom Pump Crawler Truck Crane Vehicle Forklift Hydraulic Cylinder for Steering Lifting Tilt Luffing Upper Leveling vacuum pump and compressor

Product Description

Aerial Work Platform Telescopic Excavator Boom Pump Crawler Truck Crane Vehicle Forklift Hydraulic Cylinder for Steering Lifting Tilt Luffing Upper Leveling

 

 

Product Description

 

1. Forklift Hydraulic Cylinder
 

Forklift lifting cylinder Forklift tilt cylinder Forklift steering cylinder

2. Hydraulic Cylinder for Aerial Work Vehicles

• Lifting cylinder for Aerial Work Vehicles
• Steering cylinder for Aerial Work Vehicles
• Main boom angle cylinder
• Upper level cylinder
• Main boom extension cylinder
• Main boom angle cylinder
• Folding boom angle cylinder

3. Environmental production hydrualic cylinder
•  Locking cylinder
•  Swing arm cylinder
•  Telescopic cylinder

4. Hydraulic Cylinder for Agricultural Machinery
• Grain tank lifting cylinder
• Towing and lifting cylinder
4. Hydraulic Cylinder for Crawler crane

•  Lifting cylinder for crawler crane
•  hydraulic cylinder for preventing rear tilt of boom
•  cylinder for frame support

Applications of hydraulic cylinder

Here are some key points about forklift side shift cylinders:

1.Function: The side shift cylinder is responsible for controlling the movement of the forklift carriage and forks horizontally along the forklift’s frame. It typically consists of a hydraulic cylinder, piston, seals, and a control valve. When hydraulic pressure is applied, the cylinder extends or retracts, pushing or pulling the carriage and forks laterally.

2.Benefits: Forklifts equipped with side shift cylinders offer several advantages. They allow operators to adjust the fork position to align with pallets or loads accurately, even in confined spaces. This feature reduces the need for constant repositioning of the forklift, saving time, and increasing productivity. Side shifting also improves safety by minimizing the risk of accidental collisions with racks, walls, or other obstacles.

3.Control: The side shift cylinder is typically controlled by hydraulic controls within the operator’s reach. The operator can activate the controls to move the forks left or right, adjusting the position to align with the load or desired placement location.

4.Capacity and Compatibility: When selecting a side shift cylinder, consider its load capacity to ensure it can handle the maximum weight you typically handle with your forklift. Additionally, ensure compatibility with your forklift model. Different forklift manufacturers may have specific side shift cylinder designs or mounting requirements.

5.Maintenance: Regular maintenance is crucial to ensure optimal performance and longevity of the side shift cylinder. Inspect the cylinder for any signs of leaks, damage, or wear. Check the seals, hydraulic connections, and control valves for proper functioning. Follow the manufacturer’s recommendations for lubrication and servicing intervals.

6.Safety Considerations: Operators should be trained on safely and correctly using the side shift feature. They should understand the limitations of the side shift cylinder and follow recommended load capacities and operating procedures. It is essential to prioritize safety and avoid exceeding the side shift cylinder’s capabilities.

7.Manufacturer Support: Consider choosing a side shift cylinder from a reputable manufacturer that offers technical support, spare parts availability, and servicing options. This ensures you have access to assistance and resources if any issues arise.

 

How does the Forklift Side shift cylinder work?

  1. Hydraulic System: The forklift’s hydraulic system powers the side shift cylinder. It consists of a hydraulic pump, control valves, hydraulic lines, and a hydraulic fluid reservoir. The hydraulic pump pressurizes the fluid, which is then directed to the side shift cylinder when the operator activates the controls.

  2. Control Valve: The control valve is the component that regulates the flow of hydraulic fluid to the side shift cylinder. It is typically operated by levers or buttons within the operator’s reach. When the operator activates the control, the valve opens, allowing hydraulic fluid to flow into or out of the side shift cylinder.

  3. Side Shift Cylinder: The side shift cylinder is a hydraulic cylinder with a piston, piston rod, seals, and cylinder housing. It is attached to the forklift carriage and positioned parallel to the forks. The cylinder is designed to extend or retract, moving the carriage and forks laterally.

  4. Extension and Retraction: When the control valve is activated to extend the side shift cylinder, hydraulic fluid is directed into the cylinder, applying pressure on the piston. The pressure causes the piston to move outward, expanding the piston rod and pushing the carriage and forks in 1 direction. Conversely, when the control valve is activated to retract the side shift cylinder, hydraulic fluid is directed out of the cylinder, allowing the piston to move inward, pulling the carriage and forks in the opposite direction.

  5. Alignment and Positioning: The operator can precisely control the lateral movement of the forks by operating the control valve. By adjusting the flow of hydraulic fluid into or out of the side shift cylinder, the operator can align the forks with the load, position them accurately within pallets or racks, or accommodate different load sizes or configurations.

  6. Safety Features: Many forklift side shift cylinders have safety features to prevent accidental movements or ensure proper alignment. These may include locking mechanisms that secure the forks in position during operation or automatic centering functions that return the knives to a central part when the control is released.

 

Our Company

We have a first-class independent R&D platform for assembly. The forklift cylinder production workshop has 4 semi-automatic lifting cylinder assembly lines and 1 fully automatic tilting cylinder assembly line, with a designed annual production capacity of 1 million pieces; the special cylinder workshop is equipped with semi-automatic cleaning and assembly systems of various specifications, with a designed annual production capacity of 200,000 essays. It has famous CNC machining equipment, machining centers, special equipment for high-precision cylinder processing, robot welding machines, automatic cleaning machines, automatic cylinder assembly machines, and automatic paint production lines. We have more than 300 sets of critical equipment running. The optimized allocation and efficient utilization of equipment resources ensure the precision requirements of the products and meet the high standard quality requirements of the products.

   Forklift cylinder assembly shop

 Other types of cylinder assembly shop

Welding

Painting & coating

     Painting & coating line

  Fully automatic water-based

Testing

To further improve product performance, and establish the leadership position of our hydraulic cylinder in the industry, our company and zjimee jointly established a Comprehensive performance laboratory of hydraulic cylinders, hydraulic valves, and hydraulic pumps; the lab is computer-assisted testing, using electro-hydraulic control technology, the test conditions preset by computer, which improves the test accuracy and system versatility, and the experimental data.
The automatic collection is realized through the application of sensors, and the output data, such as the internal leakage and load efficiency of the cylinder or the valve, are directly processed by the computer and converted to standard units (ml/min; %). At the same time, to ensure the working safety of the hydraulic system, the state monitoring function is carried out for key performance parameters, such as “oil temperature monitoring, liquid level monitoring, filter device monitoring,” etc. Among them, the hydraulic cylinder test stand can test the performance of “load efficiency” and “internal leakage” by readings. At the same time, it is equipped with a grating ruler measuring instrument, which meets the requirements of all test items of hydraulic cylinder products in the national standard.

Our Factory

Packaging & Shipping

A short lifting cylinder for a forklift is a specific type of hydraulic cylinder designed for vertical lifting applications in forklifts. It is typically used to raise and lower the mast assembly and forks of the forklift, allowing for the lifting and positioning of loads. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: GS, RoHS, CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Rotary
Adjusted Form: Regulated Type

tilt cylinder

How does a tilt cylinder handle variations in hydraulic seal technology?

A tilt cylinder is designed to handle variations in hydraulic seal technology effectively. Hydraulic seals play a critical role in the proper functioning and performance of tilt cylinders. Here’s a detailed explanation:

  • Sealing Efficiency: Tilt cylinders are equipped with hydraulic seals that effectively prevent leakage of hydraulic fluid. The design and construction of these seals ensure a tight and reliable seal, even under high-pressure conditions. Whether the hydraulic seal technology involves traditional seals, such as O-rings or lip seals, or more advanced sealing solutions, tilt cylinders are designed to accommodate and utilize the specific seal technology for optimal sealing efficiency.
  • Compatibility with Seal Materials: Tilt cylinders are designed to be compatible with various seal materials used in hydraulic systems. Different hydraulic seal technologies may utilize different materials, such as rubber compounds, polyurethane, or synthetic materials. Tilt cylinders are engineered to work seamlessly with a wide range of seal materials, ensuring proper sealing performance and longevity.
  • Seal Configuration and Design: Tilt cylinders are designed to accommodate different seal configurations and designs. Hydraulic seal technologies may vary in terms of seal profiles, dimensions, and installation methods. Tilt cylinders are manufactured with the necessary features and specifications to accommodate these variations. Whether it involves single-acting or double-acting cylinders, piston seals, rod seals, or wiper seals, tilt cylinders are designed to handle the specific seal configuration and design requirements.
  • Seal Maintenance and Replacement: Tilt cylinders are designed to facilitate seal maintenance and replacement. Hydraulic seals may require periodic inspection, lubrication, or replacement to ensure optimal performance and prevent leakage. Tilt cylinders are designed with accessible seal areas, allowing for convenient inspection and maintenance. Additionally, the design of tilt cylinders enables efficient seal replacement when necessary, minimizing downtime and ensuring continuous operation.
  • Seal Technology Advancements: Tilt cylinders are adaptable to advancements in hydraulic seal technology. The field of hydraulic seal technology continues to evolve, with new materials, designs, and technologies being developed. Tilt cylinder manufacturers actively incorporate and adapt to these advancements, ensuring that their cylinders can effectively handle the variations and improvements in hydraulic seal technology over time.

Therefore, tilt cylinders are designed to handle variations in hydraulic seal technology by providing sealing efficiency, compatibility with seal materials, accommodating different seal configurations and designs, facilitating seal maintenance and replacement, and adapting to seal technology advancements. By considering the specific requirements of hydraulic seal technology, tilt cylinders ensure reliable and efficient sealing performance in hydraulic systems.

tilt cylinder

Can tilt cylinders be used in both mobile and stationary machinery?

Yes, tilt cylinders can be used in both mobile and stationary machinery. They are versatile components that find application in various types of equipment across different industries. Here’s a detailed explanation:

  • Mobile Machinery: Tilt cylinders are commonly used in mobile machinery, such as construction equipment, agricultural machinery, mining vehicles, and forestry equipment. In these applications, tilt cylinders enable the adjustment of attachments or implements, allowing operators to achieve the desired angle or position. For example, in construction excavators, tilt cylinders enable the tilting of the bucket to precisely control the excavation or material handling process. The ability to tilt attachments enhances the versatility and performance of mobile machinery in different job site conditions.
  • Stationary Machinery: Tilt cylinders are also utilized in stationary machinery, including industrial presses, material handling systems, hydraulic presses, and waste compactors. In these applications, tilt cylinders provide controlled tilting or positioning of components or workpieces. For instance, in industrial presses, tilt cylinders facilitate the tilting of the press bed or ram, enabling precise alignment and adjustment for various manufacturing processes. Stationary machinery benefits from tilt cylinders by enhancing operational efficiency, accuracy, and adaptability to different work requirements.
  • Interchangeability: One of the advantages of tilt cylinders is their interchangeability between different types of machinery. Tilt cylinders are typically designed to be easily attached and detached, allowing for convenient installation and removal. This interchangeability enables equipment manufacturers and operators to utilize tilt cylinders across a range of machinery, providing flexibility and cost-effectiveness.
  • Customization: Tilt cylinders can be customized to suit specific mobile or stationary machinery requirements. Manufacturers can design and manufacture tilt cylinders with varying force capacities, stroke lengths, mounting options, and other specifications to meet the unique needs of different equipment. This customization ensures optimal performance and compatibility with diverse machinery applications.
  • Industry Applications: Tilt cylinders find applications in a wide range of industries, including construction, agriculture, mining, forestry, manufacturing, waste management, and more. Their versatility makes them suitable for different equipment types, such as excavators, loaders, dozers, cranes, presses, and compactors. Tilt cylinders contribute to improved functionality, productivity, and safety in these industries, irrespective of whether the machinery is mobile or stationary.

Therefore, tilt cylinders are adaptable components that can be used in both mobile and stationary machinery. Their versatility, interchangeability, customization options, and wide industry applications make them valuable for achieving controlled tilting and enhancing performance in various equipment types.

tilt cylinder

What is a tilt cylinder and how does it work in heavy machinery?

A tilt cylinder is a hydraulic cylinder used in heavy machinery to provide controlled tilting or angling of various components, such as buckets, blades, or attachments. It enables the adjustment of the working angle, allowing heavy machinery to perform tasks more effectively in various industries, including construction, mining, and agriculture.

Here’s how a tilt cylinder works in heavy machinery:

  • Structure: A tilt cylinder consists of a cylindrical body, a piston, and a rod. The cylinder body houses the piston, which divides the cylinder into two chambers: the rod side and the head side. The rod is connected to the movable component, such as a bucket, while the cylinder body is attached to the main structure of the machinery.
  • Hydraulic Fluid: The tilt cylinder is connected to a hydraulic system that supplies hydraulic fluid. The hydraulic fluid is pressurized and directed to one side of the piston, creating a force imbalance and causing the piston to move. As the piston moves, it extends or retracts the rod, resulting in the tilting action of the attached component.
  • Controlled Movement: The flow of hydraulic fluid into and out of the cylinder is controlled by valves in the hydraulic system. By regulating the flow and pressure of the hydraulic fluid, the operator can precisely control the speed, direction, and extent of the tilting movement. This allows for accurate positioning and adjustment of the component according to the specific task requirements.
  • Load Capacity: Tilt cylinders are designed to handle heavy loads encountered in heavy machinery. They are selected based on the load capacity requirements of the machinery and must be capable of generating sufficient force to tilt and hold the desired load securely.
  • Safety Features: Tilt cylinders often incorporate safety features to prevent over-tilting or unintended movement. These features may include pressure relief valves, limit switches, or sensors that provide feedback on the position and angle of the tilted component. These safety measures help protect the machinery, operators, and surrounding environment.

The use of tilt cylinders in heavy machinery offers several advantages. They enable precise control over the tilting movement, allowing operators to adapt to different tasks and working conditions. The ability to adjust the working angle enhances the efficiency, versatility, and productivity of the machinery, as it can optimize the performance of various attachments and improve material handling capabilities.

In summary, a tilt cylinder is a hydraulic cylinder used in heavy machinery to provide controlled tilting of components. By utilizing hydraulic fluid and precise control mechanisms, tilt cylinders enable heavy machinery to perform tasks more effectively and efficiently, enhancing productivity and versatility in various industries.

China Good quality Aerial Work Platform Telescopic Excavator Boom Pump Crawler Truck Crane Vehicle Forklift Hydraulic Cylinder for Steering Lifting Tilt Luffing Upper Leveling   vacuum pump and compressor	China Good quality Aerial Work Platform Telescopic Excavator Boom Pump Crawler Truck Crane Vehicle Forklift Hydraulic Cylinder for Steering Lifting Tilt Luffing Upper Leveling   vacuum pump and compressor
editor by CX 2024-02-04

China factory Custom Engineering Vehicle Loader Excavator Crane Mining Earth Moving Machinery Forklift Bulldozer Hydraulic Oil Cylinder Transmission vacuum pump

Product Description

Products Description                                                                                                   

Product Name

HSG Series Hydraulic Cylinder

Work Press

7/14/16/21/31.5MPa     37.5/63MPa Can be Customized

Material

Aluminum,Cast Iron,45mnb Steel,Stainless Steel

Bore Size

40mm–320mm,Customizable

Shaft Diameter

20mm–220mm,Customizable

Stroke Length

30mm–14100mm,Customizable

Rod Surface Hardness

HRC48-54

Paint Color

Black,Yellow,Blue,Brown,Customizable

Mounting

Earring,Flange,Clevis.Foot,Trunnion,Customizable

Warrenty

1 Year

MOQ

1 Piece

Delivery Time

7-15 Days,Also depands on specific demands

Certification

ISO9001,CE

Company Profile                                                                                                          
QIANGLIN HYDRAULIC MACHINERY CO., LTD

QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner.

FAQ:                                                                                                                             
Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in
solving customers’ problems is always  our goal. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

forklift hydraulic cylinder

Can hydraulic cylinders be used in side-loading forklifts?

Yes, hydraulic cylinders can be used in side-loading forklifts. Hydraulic systems, including hydraulic cylinders, are commonly employed in side-loading forklifts and play a critical role in their operation. Here’s an explanation of their use:

Side-loading forklifts, also known as sideloaders, are specifically designed for loading and unloading long and bulky items, such as lumber, pipes, and other elongated materials. These forklifts have a unique configuration that allows them to approach the load from the side, as opposed to the front or rear like traditional forklifts.

The hydraulic cylinders in side-loading forklifts are integral to their functionality and contribute in the following ways:

1. Lateral Movement:

Hydraulic cylinders are used to enable the lateral movement of the load-carrying platform or forks in side-loading forklifts. These cylinders are typically positioned horizontally and provide the necessary force to extend and retract the forks or platform, allowing for precise side-to-side movement. The hydraulic system controls the extension and retraction of the cylinders, facilitating efficient loading and unloading of long and bulky items.

2. Load Stability:

Hydraulic cylinders also contribute to load stability in side-loading forklifts. By adjusting the height and angle of the forks or platform, the cylinders help ensure that the load remains secure during transport. The hydraulic system allows for precise control over the positioning of the load, minimizing the risk of shifting or tipping during side-loading operations.

3. Weight Distribution:

Hydraulic cylinders assist in maintaining proper weight distribution in side-loading forklifts. By adjusting the height and angle of the load-carrying platform or forks, the cylinders help distribute the weight of the load evenly across the forklift. This ensures stability and balance during side-loading maneuvers, reducing the risk of tipping or overloading.

4. Control and Maneuverability:

The hydraulic system, including the cylinders, provides precise control and maneuverability in side-loading forklifts. By adjusting the extension and retraction of the cylinders, operators can navigate tight spaces, position the load accurately, and perform delicate maneuvers with ease. The hydraulic system’s responsiveness and control enhance the overall efficiency and safety of side-loading operations.

In summary, hydraulic cylinders are essential components of side-loading forklifts. They enable lateral movement, contribute to load stability, assist in maintaining proper weight distribution, and provide control and maneuverability. By utilizing hydraulic power, these cylinders facilitate efficient and safe loading and unloading of long and bulky items in side-loading forklift applications.

forklift hydraulic cylinder \

Can hydraulic cylinders be used in order fulfillment centers?

Yes, hydraulic cylinders can be used in order fulfillment centers. Order fulfillment centers require efficient and precise material handling equipment to handle the storage and movement of goods. Hydraulic cylinders are commonly used in various applications within these centers. Here’s an explanation of how they can be utilized:

Hydraulic cylinders find applications in order fulfillment centers in the following ways:

1. Conveyor Systems:

Conveyor systems are extensively used in order fulfillment centers for the transportation of goods. Hydraulic cylinders are employed to control the movement and positioning of conveyor belts. These cylinders enable smooth and precise adjustments of the conveyor height, ensuring efficient transfer of items between different processing areas.

2. Lift Tables and Platforms:

Hydraulic cylinders are utilized in lift tables and platforms used for order picking and loading/unloading operations. These cylinders provide controlled lifting and lowering of the tables or platforms, allowing operators to adjust the working height as needed. This enables ergonomic working conditions and precise alignment with shelving or loading docks.

3. Scissor Lifts:

Scissor lifts are commonly used in order fulfillment centers to reach elevated areas for order picking or stock replenishment. Hydraulic cylinders power the vertical movement of scissor lifts, providing stability and controlled elevation. The cylinders allow for precise positioning at different heights, enhancing efficiency and safety during the order fulfillment process.

4. Pallet Handling Equipment:

Order fulfillment centers often utilize pallet handling equipment, such as pallet jacks and pallet positioners, to move and stack palletized goods. Hydraulic cylinders are integral components of these machines, enabling the lifting and lowering of pallets. The cylinders provide the necessary force and control to handle heavy loads and ensure accurate placement of pallets.

5. Automated Guided Vehicles (AGVs):

AGVs are autonomous vehicles utilized in order fulfillment centers to transport goods within the facility. Hydraulic cylinders are employed in the lifting mechanisms of AGVs, allowing them to pick up and drop off loads at designated locations. The cylinders enable precise vertical movement and positioning of the load, ensuring accurate and efficient material handling.

In summary, hydraulic cylinders have various applications in order fulfillment centers, including conveyor systems, lift tables and platforms, scissor lifts, pallet handling equipment, and AGVs. These cylinders contribute to efficient and precise material handling, enhancing productivity and streamlining the order fulfillment process.

forklift hydraulic cylinder

How does a forklift hydraulic cylinder assist in lifting loads?

A forklift hydraulic cylinder plays a critical role in assisting the lifting of loads. Here’s a detailed explanation of how it works:

When a forklift needs to lift a load, the hydraulic cylinder generates the necessary force to raise the load to the desired height. Here’s a step-by-step process of how the hydraulic cylinder assists in lifting loads:

1. Hydraulic Pressure:

When the operator activates the hydraulic controls of the forklift, hydraulic pressure is generated in the hydraulic system. This pressure is typically created by a hydraulic pump, which pressurizes the hydraulic fluid (usually oil) in the system.

2. Hydraulic Fluid Flow:

The pressurized hydraulic fluid is directed to the hydraulic cylinder through control valves and hoses. The fluid enters the cylinder through the inlet port, filling one side of the cylinder.

3. Piston and Piston Rod Extension:

As the pressurized hydraulic fluid enters the cylinder, it acts on one side of the piston. The force exerted by the fluid pushes the piston and the connected piston rod upward.

4. Load Lifting:

As the piston rod extends, it transfers the force to the load-bearing structure of the forklift, such as the mast assembly. The force exerted by the hydraulic cylinder enables the forklift to lift the load off the ground.

5. Load Stability:

The hydraulic cylinder assists in maintaining load stability during the lifting process. The controlled extension of the cylinder allows for smooth and precise lifting, reducing the chances of load tilting or instability.

6. Load Holding:

Once the load reaches the desired height, the hydraulic system can hold the load in place using a valve or a locking mechanism. This ensures that the load remains securely lifted until the operator decides to lower it.

The hydraulic cylinder’s ability to generate a significant amount of force allows forklifts to lift heavy loads efficiently. By controlling the flow of hydraulic fluid and adjusting the cylinder’s extension, the operator can precisely control the lifting speed and height.

In summary, a forklift hydraulic cylinder assists in lifting loads by utilizing hydraulic pressure to extend the piston and piston rod, transferring force to the load-bearing structure of the forklift. This hydraulic force enables the forklift to lift heavy loads, and the controlled extension of the cylinder ensures load stability and precise lifting capabilities.

China factory Custom Engineering Vehicle Loader Excavator Crane Mining Earth Moving Machinery Forklift Bulldozer Hydraulic Oil Cylinder Transmission   vacuum pump	China factory Custom Engineering Vehicle Loader Excavator Crane Mining Earth Moving Machinery Forklift Bulldozer Hydraulic Oil Cylinder Transmission   vacuum pump
editor by CX 2024-01-18

China supplier Cat Excavator Hydraulic Oil Cylinder Arm Boom Bucket Cylinder Hydraulic Cylinder for Cat E324D E326D E325D E328d E329d Series vacuum pump ac

Product Description

1 YEAR WARRANTY AND EXCELLENT SERVICE
24 HOURS OF SMOOTHLY COMMUNICATION

Products Description

Factory customized hydraulic cylinder, cylinder head, piston, and hydraulic cylinder rod.
cylinder features :
Made of high-quality materials, advanced production technology, with high durability. Using Japan NOK reflected the
seal and the company’s unique sealing system design, can get the best sealing oil film and sealing performance. With
advanced production equipment and technology, makes the piston rod, cylinder, cylinder head, piston, and other
main components have good surface roughness and super performance, etc

Custom Hydraulic Cylinder / Pneumatic Cylinder

Application

Construction Equipment, Engineering machinery, mine, shipping, metallurgy, water conservancy, offshore, agriculture, etc.

Stroke

20mm to 16000mm,Customizable

Bore

40mm to 1500mm,Customizable

Shaft

12mm to 1000mm,Customizable

Work pressure

16Mpa to 70Mpa (2250 CHINAMFG – 10150 PSI)

Seal

Parker, Merkel, NOK, Hallite,etc.

Paint

Red, Grey, Yellow, Black, etc.

Material

St52, CK45, 4140, Duplex2205, Stainless Steel 304/316, etc.

Certificate

ISO9001,CE, ABS, Lloyds, SGS, etc.

Package

Bubble-wrap packing, then in wooden case.

Color

choose the color according to customer requirement

Model

Double Acting or Single Acting

Cylinder body material

ST52, CK45, 4140, Duplex 2205, Stainless Steel 304/316, etc.

Structure

Piston Type, Plunger Type, Telescopic Type

Tips:
OEM service provided. we produce as per client’s drawing or design with technical requirements. Contact Us!
We also produce hydraulic systems, and hydraulic power units.

Details Images

Application

Company Profile
Product packaging

Certifications

FAQ

Q: Are you a trading company or a manufacturer?
A: We are a factory with more than 20 years’ experience.

Q: How long for delivery?
A: Generally it is 15-30days as we are a customized service we confirm with the customer when place an order.

Q: What is the MOQ?
A: It depends on what you are buying. Normally, our minimum order is 1 20′ full container and LCL container (less than a
container load) can be acceptable.

Q: Can you customize my products?
A: Yes, we can customized products with your design drawings like DWG, DXF, DXW, IGES, STEP, PDF etc.

Q: What is your terms of payment?
A: 30% T/T in advance, balance before shipment, or as per discussion.

Q: What about your quality control?
A: * . Checking the raw material after they reach our factory—–Incoming quality control(IQC)
    * . Checking the details before the production line operated
    * . Have full inspection and routing inspection during mass production—-In-process quality control(IPQC)
    * . Checking the goods after they are finished—-Final quality control(FQC)
    * . Checking the goods after they are finished—-Outgoing quality control(QC)
    * . 100% inspection and delivery before shipment

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: GS, RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Customization:
Available

|

forklift hydraulic cylinder

How Does a Forklift Hydraulic Cylinder Handle Variations in Temperature?

A forklift hydraulic cylinder is designed to handle variations in temperature effectively to ensure reliable and consistent performance. The hydraulic system, including the cylinder, is engineered to withstand both high and low temperatures commonly encountered in different operating environments. Here’s a detailed explanation of how a forklift hydraulic cylinder handles variations in temperature:

  1. Temperature-Resistant Seals:
  2. Hydraulic cylinders in forklifts are equipped with seals that are specifically designed to withstand temperature fluctuations. These seals are made from high-quality materials such as synthetic rubber or thermoplastic elastomers that have excellent resistance to heat and cold. The temperature-resistant seals ensure proper sealing and prevent leakage of hydraulic fluid, even when exposed to extreme temperature conditions.

  3. Hydraulic Fluid Selection:
  4. The choice of hydraulic fluid plays a crucial role in temperature management within the hydraulic system, including the cylinder. Different types of hydraulic fluids are available, each with specific temperature ranges for optimal performance. Forklift manufacturers typically recommend hydraulic fluids that are suitable for the expected operating temperatures. These fluids have properties that enable them to maintain consistent viscosity and lubrication characteristics, ensuring smooth cylinder operation across a wide temperature range.

  5. Thermal Expansion Compensation:
  6. Variations in temperature cause materials to expand or contract. Hydraulic cylinders are designed to accommodate the thermal expansion of components effectively. The materials used in the cylinder construction, such as steel or aluminum alloys, have specific coefficients of thermal expansion. By considering these properties during the design and manufacturing process, forklift hydraulic cylinders are built to compensate for thermal expansion, minimizing the risk of structural damage or performance issues due to temperature changes.

  7. Heat Dissipation and Cooling:
  8. In high-temperature environments, forklift hydraulic cylinders may be exposed to heat generated by the hydraulic system or external sources. To prevent overheating, cylinders are often equipped with cooling mechanisms. These mechanisms can include cooling fins or external cooling systems that help dissipate heat and maintain the cylinder within the desired temperature range. Effective heat dissipation ensures that the hydraulic fluid retains its optimal properties and that the cylinder operates efficiently and reliably.

  9. Cold Start Considerations:
  10. In low-temperature conditions, such as during cold starts, hydraulic cylinders may experience increased viscosity of the hydraulic fluid, which can affect their performance. To mitigate this issue, forklift hydraulic systems are designed with features such as preheating systems or low-temperature hydraulic fluids. These measures help to warm up the hydraulic fluid and ensure its proper flow and lubrication, allowing the hydraulic cylinder to operate smoothly even in cold environments.

  11. Insulation and Protective Measures:
  12. In extreme temperature conditions, additional insulation or protective measures may be applied to the hydraulic cylinder and its components. Insulation materials can help maintain stable operating temperatures within the cylinder, preventing heat loss in cold environments or minimizing heat absorption in hot environments. Protective coatings or covers may also be used to shield the cylinder from external temperature fluctuations or exposure to harsh elements, ensuring its longevity and performance.

By incorporating temperature-resistant seals, selecting suitable hydraulic fluids, compensating for thermal expansion, implementing heat dissipation mechanisms, considering cold start conditions, and applying insulation or protective measures, forklift hydraulic cylinders are designed to handle variations in temperature effectively. These design considerations ensure the reliable and consistent operation of the hydraulic system, enabling forklifts to perform optimally in diverse temperature environments.

forklift hydraulic cylinder

How does a forklift hydraulic cylinder contribute to load handling precision?

A forklift hydraulic cylinder plays a significant role in achieving precise load handling. Here’s an explanation of how it contributes to load handling precision:

The hydraulic cylinder contributes to load handling precision in the following ways:

1. Controlled Lifting and Lowering:

The hydraulic cylinder enables controlled lifting and lowering of the forks or attachment. By adjusting the hydraulic pressure and flow, the operator can smoothly and precisely raise or lower the load. This control allows for accurate positioning of the forks and precise handling of the load, minimizing the risk of damage or accidents.

2. Variable Speed Control:

Forklift hydraulic cylinders offer variable speed control during lift and tilt operations. The operator can adjust the hydraulic flow rate to control the speed at which the forks or attachment move. This variable speed control allows for fine adjustments and precise positioning of the load, even in delicate or sensitive handling situations.

3. Load Balancing:

The hydraulic cylinder contributes to load balancing, which is crucial for precise load handling. By adjusting the extension or retraction of the cylinder, the operator can maintain a proper balance between the load and the forklift. This balance ensures stability and control during lifting, lowering, and transport, enhancing load handling precision.

4. Fork Positioning:

Hydraulic cylinders are responsible for controlling the positioning of the forks or attachment. By extending or retracting the cylinders, the operator can adjust the horizontal position of the forks, aligning them with the load or pallet. This precise fork positioning allows for accurate entry into pallets or containers, ensuring efficient load handling.

5. Attachment Control:

In forklifts with specialized attachments, hydraulic cylinders contribute to precise control of the attachment’s movements. Whether it’s a side shift, fork positioner, or rotating attachment, the hydraulic cylinder enables accurate adjustments and alignment of the attachment to the load. This precise attachment control enhances load handling precision, especially when dealing with unique or challenging load configurations.

In summary, a forklift hydraulic cylinder contributes to load handling precision through controlled lifting and lowering, variable speed control, load balancing, fork positioning, and attachment control. These factors work together to provide operators with the ability to handle loads with accuracy, control, and efficiency.

forklift hydraulic cylinder

Can You Explain the Role of Hydraulic Fluid in a Forklift Cylinder?

The role of hydraulic fluid in a forklift cylinder is crucial for the proper operation and functionality of the hydraulic system. Hydraulic fluid, also known as hydraulic oil, serves multiple important functions within the forklift cylinder. Here’s an explanation of its role:

  1. Transmission of Power:
  2. Hydraulic fluid is responsible for transmitting power within the forklift cylinder. The hydraulic system in a forklift uses fluid under pressure to generate force and perform various tasks. When the forklift operator activates the controls, hydraulic fluid is pressurized by the hydraulic pump and directed towards the forklift cylinder. The pressurized fluid then applies force on the piston inside the cylinder, allowing the forklift to lift heavy loads.

  3. Lubrication:
  4. Another important role of hydraulic fluid is to provide lubrication within the forklift cylinder. As the piston moves within the cylinder, there is friction between the piston seal and the cylinder wall. Hydraulic fluid acts as a lubricant, reducing friction and preventing excessive wear and tear. The lubricating properties of the hydraulic fluid ensure smooth movement of the piston and other internal components, enhancing the longevity and efficiency of the forklift cylinder.

  5. Heat Transfer:
  6. Hydraulic systems generate heat due to the mechanical and fluid friction occurring during operation. The hydraulic fluid in the forklift cylinder plays a crucial role in heat transfer. It absorbs heat generated within the cylinder and carries it away from the components, helping to maintain the optimal operating temperature. Effective heat transfer prevents overheating and ensures the hydraulic system functions reliably. Some hydraulic fluids are specifically formulated with heat-resistant properties to handle high-temperature applications.

  7. Sealing and Contamination Prevention:
  8. Hydraulic fluid helps maintain a proper seal within the forklift cylinder. The fluid fills the small gaps between the piston and cylinder wall, preventing leakage of pressurized fluid. It also helps to keep out contaminants, such as dirt, dust, and moisture, which can cause damage to the internal components. Hydraulic fluids often contain additives that provide sealing properties and protect against corrosion, maintaining the integrity of the hydraulic system.

  9. Pressure Regulation:
  10. Hydraulic fluid plays a role in pressure regulation within the forklift cylinder. The hydraulic pump pressurizes the fluid, and this pressure is transmitted to the cylinder to generate the required force for lifting loads. The properties of the hydraulic fluid, such as viscosity and compressibility, influence the pressure characteristics within the system. Proper selection of hydraulic fluid ensures the desired pressure levels are maintained, allowing the forklift to operate safely and efficiently.

  11. Contaminant Suspension:
  12. Hydraulic fluid acts as a medium for suspending and carrying away contaminants that may enter the forklift cylinder. It traps particles and debris, preventing them from settling on critical hydraulic components. This helps to maintain the cleanliness of the hydraulic system and reduces the risk of damage or clogging. Regular maintenance, including fluid filtration and replacement, is essential to ensure the hydraulic fluid effectively suspends contaminants and maintains system cleanliness.

In summary, hydraulic fluid plays a vital role in a forklift cylinder. It transmits power, provides lubrication, facilitates heat transfer, helps maintain seals, regulates pressure, and suspends contaminants. By performing these functions, hydraulic fluid ensures the smooth and efficient operation of the forklift hydraulic system, contributing to the lifting and handling of heavy loads with precision and reliability.

China supplier Cat Excavator Hydraulic Oil Cylinder Arm Boom Bucket Cylinder Hydraulic Cylinder for Cat E324D E326D E325D E328d E329d Series   vacuum pump acChina supplier Cat Excavator Hydraulic Oil Cylinder Arm Boom Bucket Cylinder Hydraulic Cylinder for Cat E324D E326D E325D E328d E329d Series   vacuum pump ac
editor by CX 2024-01-07

China manufacturer Excavator Parts Excavator Hydraulic Oil Cylinder Boom Arm Bucket Cylinders Assy vacuum pump brakes

Product Description

SPARE PARTS FOR VARIOUS EQUIPMENT MODELS  : 
 

 

Easytrade (HangZhou) Mechanical Co., Ltd. is located in HangZhou, China. It is a wholesaler of construction machinery parts and also an overseas distributor of XGMA.

The company provides spare parts suitable for after-sales maintenance of excavators, wheel loaders, bulldozers, generator sets, dump trucks and other construction machinery, including engine parts, electrical parts, hydraulic parts, repair kits and so on.The main brands it deals with are XGMA, SHANGCHAI, YUCHAI,  and it can also provide LIUGONG, LONGKING, SINOTRUK, SDEC, DCEC, DOOSAN,and other brands.

Our company has a long and close relationship with major OEMs and can provide customized products for users and provide professional services for traders to purchase products from major domestic OEMs.

The company has sufficient stock and close cooperation with factories to ensure that customers’ needs are met in a timely manner. The company’s team has rich professional experience and can provide professional and considerate services to users.

Our Warehouse


Packaging and shipment

Q&A

Q1:What are your payment terms?
A1:T/T 30% as deposit and 70% before delivery. We will show you photos of the products and packaging before you pay the balance.

Q2:What is your delivery time?
A2:Generally speaking, it takes 7 days for air orders and 20 to 30 days for sea orders after we receive your prepayment. The exact delivery time depends on the items and quantity you order.

Q3:Do you have MOQ?
A3:For general parts, we don’t have MOQ, 1 piece can be sold, but for some parts, such as bearings, pistons, we may have MOQ, such as 6 pieces, 12 pieces, but if there is MOQ for special parts, we will inform.

Q4:How can I contact you?
A4:You can send your inquiry to us directly, or you can contact us by email, phone or WeChat. We will reply to you as soon as possible.

Q5:How do you keep our business in good relationship for a long time?
A5:1. We maintain good quality and competitive prices to ensure our customers benefit.
2. We respect every customer and treat them as our friends, we sincerely do business and make friends with them no matter what. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 90 Days
Type: Hydraulic System
Application: Excavator
Condition: New
Transport Package: Carton, Wooden Case or Pallet
Trademark: XGMA

hydraulic cylinder

Can hydraulic cylinders be retrofitted onto existing equipment for improved functionality?

Yes, hydraulic cylinders can be retrofitted onto existing equipment to enhance functionality and performance. Retrofitting hydraulic cylinders onto existing machinery or equipment offers several benefits, including increased power, improved control, enhanced precision, and versatility. Here’s a detailed explanation of how hydraulic cylinders can be retrofitted onto existing equipment for improved functionality:

1. Increased Power:

– Retrofitting hydraulic cylinders allows for the addition of hydraulic power to the existing equipment. By integrating hydraulic cylinders, the equipment can generate higher forces and handle heavier loads. This increased power enables the equipment to perform tasks that were previously challenging or impossible. For example, a retrofit hydraulic cylinder on a crane can enhance its lifting capacity and enable it to handle heavier loads more efficiently.

2. Improved Control:

– Hydraulic cylinders provide precise control over the motion and positioning of equipment. By retrofitting hydraulic cylinders, operators gain better control over the speed, force, and direction of movement. The addition of hydraulic control valves and a hydraulic power unit allows for fine-tuning of the equipment’s operation. Improved control facilitates safer and more efficient operation, reducing the risk of damage and improving overall productivity.

3. Enhanced Precision:

– Retrofitting hydraulic cylinders onto existing equipment can significantly improve precision and accuracy. Hydraulic systems offer precise control over movement, enabling smooth and controlled motion. This enhanced precision is beneficial in applications where precise positioning or repetitive movements are required. For instance, retrofitting hydraulic cylinders onto a robotic arm can enhance its accuracy and repeatability, making it more suitable for tasks that demand high precision.

4. Versatility and Adaptability:

– Retrofitting hydraulic cylinders can increase the versatility and adaptability of existing equipment. Hydraulic systems can be easily integrated with various types of machinery, allowing for the utilization of hydraulic power across different applications. The modular nature of hydraulic components facilitates the retrofitting process, enabling the equipment to perform a broader range of tasks. This versatility is particularly advantageous in industries where equipment needs to adapt to changing operational requirements.

5. Retrofit Kits and Customization:

– Manufacturers often provide retrofit kits that include all the necessary components for integrating hydraulic cylinders onto existing equipment. These kits typically consist of hydraulic cylinders, mounting brackets, hoses, fittings, control valves, and other required accessories. Retrofit kits simplify the retrofitting process and ensure compatibility between the hydraulic components and the existing equipment. Additionally, manufacturers can offer customization options to tailor the retrofit solution to specific equipment and application needs.

6. Cost-Effective Solution:

– Retrofitting hydraulic cylinders onto existing equipment can be a cost-effective solution compared to purchasing new machinery. By leveraging the existing equipment’s structural framework and mechanical components, the overall cost of upgrading can be reduced. Retrofitting also minimizes downtime since the equipment does not need to be completely replaced. Furthermore, the improved functionality and performance resulting from the retrofit can lead to increased productivity and cost savings in the long run.

7. Professional Installation and Expertise:

– Retrofitting hydraulic cylinders onto existing equipment often requires professional installation and expertise. Working with experienced hydraulic system integrators or manufacturers ensures proper installation, compatibility, and optimal performance of the retrofit solution. These professionals can assess the existing equipment, recommend suitable hydraulic components, and carry out the retrofitting process efficiently. Their knowledge and expertise contribute to the successful integration of hydraulic cylinders and the overall improvement of equipment functionality.

In summary, hydraulic cylinders can indeed be retrofitted onto existing equipment to improve functionality. This retrofitting process offers advantages such as increased power, improved control, enhanced precision, versatility, cost-effectiveness, and access to retrofit kits and customization options. By retrofitting hydraulic cylinders, existing equipment can be upgraded to meet evolving operational needs, extend its lifespan, and enhance overall performance.

hydraulic cylinder

Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance

Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let’s explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:

  1. Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
  2. Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
  3. Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
  4. Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
  5. Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.

In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.

hydraulic cylinder

Can hydraulic cylinders be adapted for use in both industrial and mobile equipment?

Yes, hydraulic cylinders can be adapted for use in both industrial and mobile equipment. The versatility and adaptability of hydraulic systems make them suitable for a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Equipment:

– Hydraulic cylinders are extensively used in industrial equipment such as manufacturing machinery, construction equipment, material handling systems, and heavy-duty machinery. They provide the necessary force and controlled movement for tasks such as lifting, pushing, pulling, and positioning heavy loads. Industrial hydraulic cylinders are typically designed for robustness, durability, and high load-bearing capacities to withstand the demanding environments and heavy-duty applications encountered in industries.

2. Mobile Equipment:

– Hydraulic cylinders are also widely adopted in mobile equipment, including agricultural machinery, mining equipment, forestry machinery, and transportation vehicles. These cylinders enable various functions such as tilting, lifting, steering, and stabilizing. Mobile hydraulic cylinders are designed to be compact, lightweight, and efficient to meet the specific requirements of mobile applications. They are often integrated into hydraulic systems that power multiple functions in a single machine.

3. Adaptability:

– One of the key advantages of hydraulic cylinders is their adaptability. They can be customized and configured to suit different operating conditions, equipment sizes, load capacities, and speed requirements. Hydraulic cylinder manufacturers offer a wide range of sizes, stroke lengths, mounting options, and rod configurations to accommodate diverse applications. This adaptability allows hydraulic cylinders to be utilized in both industrial and mobile equipment, serving various purposes across different sectors.

4. Mounting Options:

– Hydraulic cylinders can be adapted to different mounting arrangements to suit the specific requirements of industrial and mobile equipment. They can be mounted in various orientations, including vertical, horizontal, or at an angle. Different mounting options, such as flange mounts, trunnion mounts, and clevis mounts, provide flexibility in integrating hydraulic cylinders into different equipment designs.

5. Integration with Hydraulic Systems:

– Hydraulic cylinders are often part of a larger hydraulic system that includes components such as pumps, valves, hoses, and reservoirs. These systems can be tailored to meet the specific needs of both industrial and mobile equipment. The hydraulic system’s design and configuration can be adapted to provide the necessary flow rates, pressures, and control mechanisms required for optimal performance in the intended application.

6. Control and Automation:

– Hydraulic cylinders in both industrial and mobile equipment can be integrated with control systems and automation technologies. This allows for precise and automated control of the cylinder’s movement and function. Proportional control valves, sensors, and electronic controls can be incorporated to achieve accurate positioning, speed control, and synchronization of multiple hydraulic cylinders, enhancing overall equipment performance and productivity.

7. Safety Considerations:

– Hydraulic cylinders for both industrial and mobile equipment are designed with safety in mind. They often feature built-in safety mechanisms such as overload protection, pressure relief valves, and emergency stop systems to prevent accidents and equipment damage. Safety standards and regulations specific to each industry are taken into account during the design and adaptation of hydraulic cylinders for different applications.

Overall, hydraulic cylinders offer the adaptability and performance required for use in both industrial and mobile equipment. Their versatility, customizable features, mounting options, integration capabilities, and safety considerations make them suitable for a wide range of applications across diverse industries. Whether it’s heavy-duty industrial machinery or mobile equipment operating in challenging environments, hydraulic cylinders can be adapted to meet the specific needs and requirements of various equipment types.

China manufacturer Excavator Parts Excavator Hydraulic Oil Cylinder Boom Arm Bucket Cylinders Assy   vacuum pump brakesChina manufacturer Excavator Parts Excavator Hydraulic Oil Cylinder Boom Arm Bucket Cylinders Assy   vacuum pump brakes
editor by CX 2023-12-25

China Good quality Best Price Small Double Acting Hydraulic Cylinder for Excavator a/c vacuum pump

Product Description

Best Price Small Double Acting Hydraulic Cylinder for Excavator

Product Specifications :

Item Specifications
Bore diameter 60mm-250mm,customizable
Bod diameter 40mm-230mm,customizable
Stroke 100mm-400mm,customizable
Working Pressure 7-40Mpa,customizable
Surface treatment of piston rod HaHard Chrome Plating,Electroplated Milky White Chromium+Hard Chromium,Nickel Plating+Hard Chromium Plating,High-Velocity Oxygen-Fuel CrC NiC,Ceramic Coating,Nitriding,Laser Cladding
Work Pressure Maximum 38MPa,Customizable
Material High tensile cold drawn tube, precision honed for extended seal life
Mounting Earring,Flange,Clevis.Foot,Trunnion,Customizable
Seal Type Parker,NOK, Hallite or as customer’s requirement
Warrenty 18 months
MOQ 5 pcs
Production Time Based on order quantity.normally 30-40 days.
Certification ISO9001,CE, SGS
Packaging metal case,plywood case,carton or as requirement 
Service OEM & ODM
Warranty arranwarranty ty  18 months,customizable
Color customizable
Price Advantage Competitive factory price with guaranteed quality
Business Type Manufacturer 

Product Display:

 

Appliactions:Walking machinery

Mounting Method:
Other Products:

Our Factory:

Inspection Process:
 

  Inspection Type  Inspection Standard
Raw Material Inspection Before storage, QC takes the measurement of the raw materials.
Process Material Inspection During the production, QCs conduct a random inspection.
Before the hydraulic cylinder parts transferred to the next process, QCs takes inspection.
Final Function Testing All the hydraulic cylinders take hydraulic function test

Inspection of Mechanical Properties of Raw Materials
 

 


Process Material Inspection


Final Function Testing

Packing & Delivery:


 

About US:
Our Certificate

 

ZheJiang Tianjian Hydraulic Technology Co.,Ltd is specializing in the production of various types of hydraulic cylinders as well as cylinder barrel, piston cylinder and other cylinder accessories.

As a highly specialized manufacturer of hydraulic cylinders, tianjian provides design optimization solutions and reliable products to many customers at home and abroad. No matter in construction machinery, railway bridge machinery, port ship machinery, metallurgy and mining machinery, oil and light industry machinery, special vehicles and other industries, tianjian can provide various standard and non-standard hydraulic cylinder design optimization schemes and products according to users’ requirements, and provide integrated services for perfection and quality.

If possible, when contact with us, please apply information as below 

Bore

Rod

Stroke

Work Pressure

Mounting

Work environment

 

 

 

 

 

 

Or you can offer us your sketch diagram or photos so that we could understand you exactly meaning, help us avoid mistakes.

And if you have samples, we can manufacture according to your samples after sending to us.

Welcome to our factory if you have any time.

Your satisfaction is our biggest motivation.

Now, you can contact with us for any question or inquiry.

FAQ:

1, What does your company do?
A: we are a supplier of high quality hydraulic products including Hydraulic Cylinder, Hydraulic Motor, Hydraulic Power Pack, Hydraulic station and other Hydraulic components.
 
2, Are you a manufacture or a trading company?
A: We are a  manufacturer.
 
3, What certificate do you have?
A: All our factories are ISO certificated. And our main suppliers of materials and parts are with CE, RoHS, CSA and UL certificates.
 
4, How long is your delivery time?
A: The delivery time depends on different products and quantity. The cylinder usually need about 45-60 days and the Motor need about 30-50 days.
 
5, Can you make parts as customer’s requirement or drawing?
A: Yes, we can OEM for you as your drawings. Our engineer also can give you professional support for technical suggestions.
 
6, What kind of payment terms do you accept?
A: We prefer T/T through bank. 30% when order is confirmed and 70% before shipment. L/C is also acceptable for amount over 20,000USD.
 
7, What is your warranty policy?
A: All our products are warranted for 1 full year from date of delivery against defects in materials and workmanship. This warranty does not cover parts that are worn out through the course of normal operation or are damaged through negligence. We serious remind that unclean hydraulic oil will definitely cause damage to your Hydraulic components. And this damage is not included in the warranty range. So we strongly suggest you to use new clean oil or make sure the system oil are clean when using our parts

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: GS, RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: High Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 700/Set
1 Set(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle variations in temperature and harsh operating environments?

Hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating specific features and materials that ensure their durability, reliability, and performance. The ability of hydraulic cylinders to withstand extreme temperatures, corrosive environments, and other harsh conditions is crucial for their successful operation in a wide range of applications. Here’s a detailed explanation of how hydraulic cylinders handle variations in temperature and harsh operating environments:

1. Temperature Range:

– Hydraulic cylinders are designed to operate within a specified temperature range. The materials used in their construction, such as cylinder barrels, pistons, seals, and lubricants, are selected to withstand the anticipated temperature variations. Specialized seals and O-rings made from materials like nitrile, Viton, or polyurethane are used to maintain their sealing properties over a wide temperature range. Heat-resistant coatings or thermal insulation may be applied to certain components to protect them from high temperatures.

2. Thermal Expansion:

– Hydraulic cylinders are designed to accommodate thermal expansion and contraction that occurs with temperature changes. The materials used in their construction have different coefficients of thermal expansion, allowing the cylinder components to expand or contract at a similar rate. This design consideration prevents excessive stress, binding, or leakage that could result from thermal expansion or contraction.

3. Heat Dissipation:

– In applications where hydraulic cylinders are subjected to high temperatures, heat dissipation mechanisms are employed to prevent overheating. Cooling fins or heat sinks may be incorporated into the cylinder design to increase the surface area for heat transfer. In some cases, external cooling methods such as air or liquid cooling systems can be used to maintain optimal operating temperatures.

4. Corrosion Resistance:

– Hydraulic cylinders used in harsh operating environments are constructed from materials that exhibit excellent corrosion resistance. Stainless steel, chrome-plated steel, or other corrosion-resistant alloys are commonly used for cylinder components exposed to corrosive substances or environments. Additionally, surface treatments such as coatings, plating, or specialized paints can provide an extra layer of protection against corrosion.

5. Sealing Systems:

– Hydraulic cylinders employ sealing systems that are specifically designed to withstand harsh operating environments. The seals used in hydraulic cylinders are selected based on their resistance to temperature extremes, chemicals, abrasion, and other environmental factors. Specialized seal designs, such as wiper seals, rod seals, or high-temperature seals, are utilized to maintain effective sealing and prevent contamination of the hydraulic fluid.

6. Lubrication:

– Proper lubrication is essential for the smooth operation and longevity of hydraulic cylinders, particularly in harsh operating environments. Lubricants are selected based on their ability to withstand high temperatures, resist oxidation, and provide effective lubrication under extreme conditions. Regular maintenance and lubrication practices ensure that the cylinder components continue to operate smoothly and reduce the effects of wear and friction.

7. Robust Construction:

– Hydraulic cylinders designed for harsh operating environments are built with robust construction techniques to withstand the rigors of such conditions. The cylinder barrels, rods, and other components are manufactured to meet strict quality and durability standards. Welded or bolted construction methods are employed to ensure the structural integrity of the cylinders. Reinforcements, such as flanges or tie rods, may be added to enhance the cylinder’s strength and resistance to external forces.

8. Environmental Protection:

– Hydraulic cylinders can be equipped with additional protective features to shield them from harsh operating environments. Protective covers, boots, or bellows can be used to prevent contaminants, debris, or moisture from entering the cylinder and compromising its performance. These protective measures help extend the service life of hydraulic cylinders in demanding conditions.

9. Compliance with Standards:

– Hydraulic cylinders manufactured for specific industries or applications often comply with industry standards or regulations related to operating temperature ranges, environmental conditions, or safety requirements. Compliance with these standards ensures that hydraulic cylinders are designed and tested to meet the specific demands of their intended operating environments.

In summary, hydraulic cylinders are designed to handle variations in temperature and harsh operating environments by incorporating suitable materials, thermal expansion considerations, heat dissipation mechanisms, corrosion-resistant components, specialized sealing systems, proper lubrication, robust construction techniques, protective features, and compliance with industry standards. These design considerations and features enable hydraulic cylinders to operate reliably and effectively in a wide range of demanding applications and environmental conditions.

hydraulic cylinder

Adaptation of Hydraulic Cylinders for Medical Equipment and Aerospace Applications

Hydraulic cylinders have the potential to be adapted for use in medical equipment and aerospace applications, offering unique advantages in these industries. Let’s explore how hydraulic cylinders can be adapted for these specialized fields:

  1. Medical Equipment: Hydraulic cylinders can be adapted for various medical equipment applications, including hospital beds, patient lifts, surgical tables, and rehabilitation devices. Here’s how hydraulic cylinders are beneficial in medical equipment:
    • Positioning and Adjustability: Hydraulic cylinders provide precise and smooth movement, allowing for accurate positioning and adjustments of medical equipment. This is crucial for ensuring patient comfort, proper alignment, and ease of use.
    • Load Handling: Hydraulic cylinders offer high force capabilities, enabling the safe handling of heavy loads in medical equipment. They can support the weight of patients, facilitate smooth transitions, and provide stability during procedures.
    • Controlled Motion: Hydraulic cylinders provide controlled and stable motion, which is essential for delicate medical procedures. The ability to adjust speed, position, and force allows for precise and controlled movements, minimizing patient discomfort and ensuring accurate treatment.
    • Durability and Reliability: Hydraulic cylinders are designed to withstand rigorous use and demanding environments, making them suitable for medical equipment applications. Their durability and reliability contribute to the long-term performance and safety of medical devices.
  2. Aerospace Applications: Hydraulic cylinders can also be adapted for aerospace applications, where lightweight yet robust systems are essential. Here’s how hydraulic cylinders are advantageous in aerospace:
    • Flight Control Systems: Hydraulic cylinders play a critical role in aircraft flight control systems, including ailerons, elevators, rudders, and landing gear. They provide precise and reliable actuation, allowing pilots to control the aircraft’s movements with accuracy and responsiveness.
    • Weight Optimization: Hydraulic cylinders can be designed using lightweight materials, such as aluminum alloys or composite materials, to reduce overall weight. This weight optimization is crucial in aerospace applications to enhance fuel efficiency, payload capacity, and aircraft performance.
    • Shock and Vibration Resistance: Aerospace environments involve significant shock and vibration forces. Hydraulic cylinders can be engineered to withstand these dynamic loads while maintaining performance and reliability, ensuring consistent operation even under extreme conditions.
    • Space Constraints: Hydraulic cylinders can be designed to fit within the space constraints of aircraft or spacecraft. Their compact size and flexible mounting options allow for efficient integration into the limited available space.

In summary, hydraulic cylinders can be adapted for use in medical equipment and aerospace applications, leveraging their precise positioning, load handling capabilities, controlled motion, durability, and reliability. In medical equipment, hydraulic cylinders enable comfortable patient positioning, smooth transitions, and controlled movements during procedures. In aerospace, hydraulic cylinders provide precise actuation, weight optimization, shock and vibration resistance, and space-efficient solutions. By adapting hydraulic cylinders to these specialized fields, manufacturers can meet the unique requirements and enhance the performance of medical equipment and aerospace systems.

hydraulic cylinder

How do manufacturers ensure the quality and compatibility of hydraulic cylinders?

Manufacturers employ various measures to ensure the quality and compatibility of hydraulic cylinders, ensuring that they meet industry standards, performance requirements, and the specific needs of their customers. Here’s a detailed explanation of the methods and practices used by manufacturers to ensure the quality and compatibility of hydraulic cylinders:

1. Design and Engineering:

– Manufacturers employ skilled engineers and designers who have expertise in hydraulic systems and cylinder design. They use advanced design software and tools to create hydraulic cylinders that meet the desired specifications and performance requirements. Through careful analysis and simulation, manufacturers can ensure that the cylinders are designed to function optimally and provide the necessary force, stroke length, and reliability.

2. Material Selection:

– High-quality materials are crucial for the durability, performance, and compatibility of hydraulic cylinders. Manufacturers carefully select materials such as steel or other alloys based on their strength, corrosion resistance, and suitability for hydraulic applications. They source materials from reputable suppliers and perform quality checks to ensure that the materials meet the required standards and specifications.

3. Quality Control:

– Manufacturers implement robust quality control processes throughout the production of hydraulic cylinders. This includes rigorous inspections and tests at various stages of manufacturing, from raw material inspection to final assembly. Quality control personnel perform dimensional checks, surface finish inspections, and functional tests to verify that the cylinders meet the specified tolerances, performance criteria, and compatibility requirements.

4. Testing and Validation:

– Hydraulic cylinders undergo testing and validation procedures to ensure their performance, reliability, and compatibility. Manufacturers conduct various tests, such as pressure testing, leakage testing, load testing, and endurance testing. These tests simulate real-world operating conditions and verify that the cylinders can withstand the expected loads, pressures, and environmental factors. Additionally, manufacturers may perform compatibility testing to ensure that the cylinders can integrate seamlessly with other hydraulic system components.

5. Compliance with Standards:

– Manufacturers adhere to industry standards and regulations to ensure the quality and compatibility of hydraulic cylinders. They follow standards such as ISO 9001 for quality management systems and ISO 6020/2 or ISO 6022 for hydraulic cylinders. Compliance with these standards ensures that the manufacturing processes, quality control measures, and product performance meet internationally recognized benchmarks.

6. Certification and Accreditation:

– Manufacturers may obtain certifications and accreditations from recognized organizations to demonstrate their commitment to quality and compatibility. Certifications such as ISO certifications or third-party certifications provide assurance to customers that the hydraulic cylinders have undergone rigorous evaluations and meet specific quality and compatibility standards.

7. Customer Collaboration:

– Manufacturers actively engage with customers to understand their specific requirements and ensure compatibility. They work closely with customers to gather application-specific details, such as operating conditions, load requirements, and environmental factors. This collaborative approach allows manufacturers to customize hydraulic cylinders and provide solutions that are perfectly matched to the customer’s needs, ensuring compatibility and optimal performance.

8. Continuous Improvement:

– Manufacturers are committed to continuous improvement in their processes and products. They invest in research and development to incorporate the latest technologies, materials, and manufacturing techniques. By staying updated with industry advancements, manufacturers can enhance the quality, performance, and compatibility of their hydraulic cylinders over time.

By implementing effective design and engineering practices, selecting high-quality materials, conducting rigorous quality control, testing and validation procedures, complying with industry standards, obtaining certifications, collaborating with customers, and embracing continuous improvement, manufacturers ensure the quality and compatibility of hydraulic cylinders. These measures help to deliver reliable, high-performance cylinders that meet the diverse needs of industries and applications.
China Good quality Best Price Small Double Acting Hydraulic Cylinder for Excavator   a/c vacuum pump		China Good quality Best Price Small Double Acting Hydraulic Cylinder for Excavator   a/c vacuum pump
editor by CX 2023-12-22

China Custom East Ai High-Quality Hydraulic Cylinder for Excavator Bucket Precision Operation vacuum pump and compressor

Product Description

Excavator Hydraulic Cylinder Arm Boom Bucket Cylinder For famous brand excavator
Part number Tube dia  mm Rod dia  mm Stroke  mm
205-63-57100 120 85 1285
206-63-57100 120 85 1285
205-63-57160 120 85 1285
205-63-57120   135 95 1490
203-63-57130 125 85 1120
203-63-57131 125 85 1120
205-63-57130 125 85 1120

Specifications
1.Supply to USA,Europe,and Australia, Russia.
2.Material:Stainless Steel
3.Professional performance excavator parts supplier
4. High quality and low price

FAQ

Q1: Are you Manufacture or Trade Company?
A1: We are manufacture,we have 20 years experience for supply Metal material and products in domestic.

Q2: How can we guarantee quality?
A2: Always a pre-production sample before mass production;Always final Inspection before shipment;

Q3: What is your terms of payment ?
A3: 1.T/T: 30% deposit in advance, the balance 70% paid before shipment
2.30% down payment, the balance 70% paid against L/C at sight
3.CHINAMFG negotiation

Q4: Can you provide Certificates for aluminum materials ?
A4:Yes,we can supply MTC-Material Test Certificate.

Q5: Can you provide sample?
A5: Yes, we can provide you sample, but you need to pay for the sample and freight firstly. We will return the sample fee after
you make an order.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: GS, RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Piston Cylinder
Adjusted Form: Switching Type
Customization:
Available

|

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved sealing and reliability?

Advancements in hydraulic cylinder technology have continuously contributed to improving sealing and reliability in hydraulic systems. These advancements aim to address common challenges such as leakage, wear, and failure of seals, ensuring optimal performance and longevity. Here are several key advancements that have significantly improved sealing and reliability in hydraulic cylinders:

1. High-Performance Sealing Materials:

– The development of advanced sealing materials has greatly improved the sealing capabilities of hydraulic cylinders. Traditional sealing materials like rubber have been replaced or enhanced with high-performance materials such as polyurethane, PTFE (polytetrafluoroethylene), and various composite materials. These materials offer superior resistance to wear, temperature, and chemical degradation, resulting in improved sealing performance and extended seal life.

2. Enhanced Seal Designs:

– Advancements in seal designs have focused on improving sealing efficiency and reliability. Innovative seal profiles, such as lip seals, wipers, and scrapers, have been developed to optimize fluid retention and prevent contamination. These designs provide better sealing performance, minimizing the risk of fluid leakage and maintaining system integrity. Additionally, improved seal geometries and manufacturing techniques ensure tighter tolerances, reducing the potential for seal failure due to misalignment or extrusion.

3. Integrated Seal and Bearing Systems:

– Hydraulic cylinders now incorporate integrated seal and bearing systems, where the sealing elements also serve as bearing surfaces. This design approach reduces the number of components and potential failure points, improving overall reliability. By integrating seals and bearings, the risk of seal damage or displacement due to excessive loads or misalignment is minimized, resulting in enhanced sealing performance and increased reliability.

4. Advanced Coatings and Surface Treatments:

– The application of advanced coatings and surface treatments to hydraulic cylinder components has significantly improved sealing and reliability. Coatings such as chrome plating or ceramic coatings enhance surface hardness, wear resistance, and corrosion resistance. These surface treatments provide a smoother and more durable surface for seals to operate against, reducing friction and improving sealing performance. Moreover, specialized coatings can also provide self-lubricating properties, reducing the need for additional lubrication and enhancing reliability.

5. Sealing System Monitoring and Diagnostic Technologies:

– The integration of monitoring and diagnostic technologies in hydraulic systems has revolutionized seal performance and reliability. Sensors and monitoring systems can detect and alert operators to potential seal failures or leaks before they escalate. Real-time monitoring of pressure, temperature, and seal performance parameters allows for proactive maintenance and early intervention, preventing costly downtime and ensuring optimal sealing and reliability.

6. Computational Modeling and Simulation:

– Computational modeling and simulation techniques have played a significant role in advancing hydraulic cylinder sealing and reliability. These tools enable engineers to analyze and optimize seal designs, fluid flow dynamics, and contact stresses. By simulating various operating conditions, potential issues such as seal extrusion, wear, or leakage can be identified and mitigated early in the design phase, resulting in improved sealing performance and enhanced reliability.

7. Systematic Maintenance Practices:

– Advances in hydraulic cylinder technology have also emphasized the importance of systematic maintenance practices to ensure sealing and overall system reliability. Regular inspection, lubrication, and replacement of seals, as well as routine system flushing and filtration, help prevent premature seal failure and optimize sealing performance. Implementing preventive maintenance schedules and adhering to recommended service intervals contribute to extended seal life and enhanced reliability.

In summary, advancements in hydraulic cylinder technology have led to significant improvements in sealing and reliability. High-performance sealing materials, enhanced seal designs, integrated seal and bearing systems, advanced coatings and surface treatments, sealing system monitoring and diagnostics, computational modeling and simulation, and systematic maintenance practices have all played key roles in achieving optimal sealing performance and increased reliability. These advancements have resulted in more efficient and dependable hydraulic systems, minimizing leakage, wear, and failure of seals, and ultimately improving the overall performance and longevity of hydraulic cylinders in diverse applications.

hydraulic cylinder

What considerations are important when selecting hydraulic cylinders for mobile equipment?

To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:

  1. Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
  2. Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
  3. Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
  4. Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
  5. Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
  6. Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
  7. Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
  8. Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
  9. Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.

hydraulic cylinder

How do manufacturers ensure the quality and compatibility of hydraulic cylinders?

Manufacturers employ various measures to ensure the quality and compatibility of hydraulic cylinders, ensuring that they meet industry standards, performance requirements, and the specific needs of their customers. Here’s a detailed explanation of the methods and practices used by manufacturers to ensure the quality and compatibility of hydraulic cylinders:

1. Design and Engineering:

– Manufacturers employ skilled engineers and designers who have expertise in hydraulic systems and cylinder design. They use advanced design software and tools to create hydraulic cylinders that meet the desired specifications and performance requirements. Through careful analysis and simulation, manufacturers can ensure that the cylinders are designed to function optimally and provide the necessary force, stroke length, and reliability.

2. Material Selection:

– High-quality materials are crucial for the durability, performance, and compatibility of hydraulic cylinders. Manufacturers carefully select materials such as steel or other alloys based on their strength, corrosion resistance, and suitability for hydraulic applications. They source materials from reputable suppliers and perform quality checks to ensure that the materials meet the required standards and specifications.

3. Quality Control:

– Manufacturers implement robust quality control processes throughout the production of hydraulic cylinders. This includes rigorous inspections and tests at various stages of manufacturing, from raw material inspection to final assembly. Quality control personnel perform dimensional checks, surface finish inspections, and functional tests to verify that the cylinders meet the specified tolerances, performance criteria, and compatibility requirements.

4. Testing and Validation:

– Hydraulic cylinders undergo testing and validation procedures to ensure their performance, reliability, and compatibility. Manufacturers conduct various tests, such as pressure testing, leakage testing, load testing, and endurance testing. These tests simulate real-world operating conditions and verify that the cylinders can withstand the expected loads, pressures, and environmental factors. Additionally, manufacturers may perform compatibility testing to ensure that the cylinders can integrate seamlessly with other hydraulic system components.

5. Compliance with Standards:

– Manufacturers adhere to industry standards and regulations to ensure the quality and compatibility of hydraulic cylinders. They follow standards such as ISO 9001 for quality management systems and ISO 6020/2 or ISO 6022 for hydraulic cylinders. Compliance with these standards ensures that the manufacturing processes, quality control measures, and product performance meet internationally recognized benchmarks.

6. Certification and Accreditation:

– Manufacturers may obtain certifications and accreditations from recognized organizations to demonstrate their commitment to quality and compatibility. Certifications such as ISO certifications or third-party certifications provide assurance to customers that the hydraulic cylinders have undergone rigorous evaluations and meet specific quality and compatibility standards.

7. Customer Collaboration:

– Manufacturers actively engage with customers to understand their specific requirements and ensure compatibility. They work closely with customers to gather application-specific details, such as operating conditions, load requirements, and environmental factors. This collaborative approach allows manufacturers to customize hydraulic cylinders and provide solutions that are perfectly matched to the customer’s needs, ensuring compatibility and optimal performance.

8. Continuous Improvement:

– Manufacturers are committed to continuous improvement in their processes and products. They invest in research and development to incorporate the latest technologies, materials, and manufacturing techniques. By staying updated with industry advancements, manufacturers can enhance the quality, performance, and compatibility of their hydraulic cylinders over time.

By implementing effective design and engineering practices, selecting high-quality materials, conducting rigorous quality control, testing and validation procedures, complying with industry standards, obtaining certifications, collaborating with customers, and embracing continuous improvement, manufacturers ensure the quality and compatibility of hydraulic cylinders. These measures help to deliver reliable, high-performance cylinders that meet the diverse needs of industries and applications.
China Custom East Ai High-Quality Hydraulic Cylinder for Excavator Bucket Precision Operation   vacuum pump and compressor	China Custom East Ai High-Quality Hydraulic Cylinder for Excavator Bucket Precision Operation   vacuum pump and compressor
editor by CX 2023-12-21

China Good quality Cat Excavator Hydraulic Oil Cylinder Arm Boom Bucket Cylinder Hydraulic Cylinder for Cat E320d/E323D E320gc E320d2 Series vacuum pump ac system

Product Description

1 YEAR WARRANTY AND EXCELLENT SERVICE
24 HOURS OF SMOOTHLY COMMUNICATION

Products Description

Factory customized hydraulic cylinder, cylinder head, piston, and hydraulic cylinder rod.
cylinder features :
Made of high-quality materials, advanced production technology, with high durability. Using Japan NOK reflected the
seal and the company’s unique sealing system design, can get the best sealing oil film and sealing performance. With
advanced production equipment and technology, makes the piston rod, cylinder, cylinder head, piston, and other
main components have good surface roughness and super performance, etc

Custom Hydraulic Cylinder / Pneumatic Cylinder

Application

Construction Equipment, Engineering machinery, mine, shipping, metallurgy, water conservancy, offshore, agriculture, etc.

Stroke

20mm to 16000mm,Customizable

Bore

40mm to 1500mm,Customizable

Shaft

12mm to 1000mm,Customizable

Work pressure

16Mpa to 70Mpa (2250 CHINAMFG – 10150 PSI)

Seal

Parker, Merkel, NOK, Hallite,etc.

Paint

Red, Grey, Yellow, Black, etc.

Material

St52, CK45, 4140, Duplex2205, Stainless Steel 304/316, etc.

Certificate

ISO9001,CE, ABS, Lloyds, SGS, etc.

Package

Bubble-wrap packing, then in wooden case.

Color

choose the color according to customer requirement

Model

Double Acting or Single Acting

Cylinder body material

ST52, CK45, 4140, Duplex 2205, Stainless Steel 304/316, etc.

Structure

Piston Type, Plunger Type, Telescopic Type

Tips:
OEM service provided. we produce as per client’s drawing or design with technical requirements. Contact Us!
We also produce hydraulic systems, and hydraulic power units.

Details Images

Application

Company Profile
Product packaging

Certifications

FAQ

Q: Are you a trading company or a manufacturer?
A: We are a factory with more than 20 years’ experience.

Q: How long for delivery?
A: Generally it is 15-30days as we are a customized service we confirm with the customer when place an order.

Q: What is the MOQ?
A: It depends on what you are buying. Normally, our minimum order is 1 20′ full container and LCL container (less than a
container load) can be acceptable.

Q: Can you customize my products?
A: Yes, we can customized products with your design drawings like DWG, DXF, DXW, IGES, STEP, PDF etc.

Q: What is your terms of payment?
A: 30% T/T in advance, balance before shipment, or as per discussion.

Q: What about your quality control?
A: * . Checking the raw material after they reach our factory—–Incoming quality control(IQC)
    * . Checking the details before the production line operated
    * . Have full inspection and routing inspection during mass production—-In-process quality control(IPQC)
    * . Checking the goods after they are finished—-Final quality control(FQC)
    * . Checking the goods after they are finished—-Outgoing quality control(QC)
    * . 100% inspection and delivery before shipment

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: GS, RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Customization:
Available

|

forklift hydraulic cylinder

How does a forklift hydraulic cylinder contribute to quick load release?

A forklift hydraulic cylinder plays a crucial role in facilitating quick load release during material handling operations. Here’s an explanation of how it achieves this:

The hydraulic cylinder’s contribution to quick load release is primarily attributed to its design and the following factors:

1. Cylinder Actuation:

The hydraulic cylinder is actuated by the controlled release of hydraulic fluid. When the operator activates the appropriate controls, the hydraulic system allows the fluid to flow back into the reservoir, causing the cylinder to retract rapidly. This rapid retraction enables quick release of the load, expediting the unloading process.

2. Flow Control Valves:

The forklift’s hydraulic system incorporates flow control valves that regulate the rate of fluid flow to and from the hydraulic cylinder. During load release, these valves can be adjusted to increase the flow rate, allowing the hydraulic fluid to return to the reservoir more quickly. By controlling the flow, the cylinder can retract rapidly, facilitating quick load release.

3. Load Lowering Speed:

Hydraulic cylinders also contribute to quick load release through their load lowering functionality. When the operator desires to lower the load rapidly, the hydraulic system can be adjusted to increase the flow rate of the hydraulic fluid, which allows for faster descent of the load. This controlled acceleration of load lowering speed helps expedite the unloading process.

4. Responsive Control System:

The forklift’s hydraulic control system, including the controls for the hydraulic cylinder, is designed to be responsive and easy to operate. The operator can quickly activate the load release functions, initiating the rapid retraction of the cylinder and the subsequent quick release of the load. The intuitive control system ensures efficient and timely load release.

5. Safety Measures:

While facilitating quick load release, forklift hydraulic cylinders also incorporate safety measures to prevent uncontrolled or accidental release of the load. These safety features, such as pressure relief valves and load holding valves, ensure that the load release process remains safe and controlled, minimizing the risk of accidents or damage.

In summary, a forklift hydraulic cylinder contributes to quick load release through its actuation mechanism, flow control valves, load lowering functionality, responsive control system, and integrated safety measures. By utilizing these features, the cylinder enables rapid retraction and controlled release of the load, enhancing the efficiency of material handling operations.

forklift hydraulic cylinder

Can hydraulic cylinders be used in container handling forklifts?

Yes, hydraulic cylinders are commonly used in container handling forklifts. Container handling forklifts, also known as container handlers or reach stackers, are specifically designed for lifting and moving shipping containers. Hydraulic cylinders play a crucial role in the operation of these specialized forklifts. Here’s an explanation of how hydraulic cylinders are used in container handling forklifts:

Hydraulic cylinders are utilized in container handling forklifts in the following ways:

1. Mast Lifting:

The main function of hydraulic cylinders in container handling forklifts is to lift and lower the mast. The mast is the vertical assembly that houses the lifting mechanism and forks. Hydraulic cylinders, typically positioned on either side of the mast, provide the power and control for vertical movement. By extending or retracting the cylinders, the forklift can lift and lower containers to the desired height, allowing for stacking or unstacking operations.

2. Reach and Extend:

Container handling forklifts often feature telescopic masts that can reach out and extend. Hydraulic cylinders are responsible for extending and retracting the telescopic sections of the mast. These cylinders enable the forklift to reach containers that are placed further away or to adjust the reach based on container size. The precise control offered by the hydraulic cylinders allows for accurate positioning and safe handling of containers.

3. Container Tilting:

In some container handling forklifts, hydraulic cylinders are used to tilt the container. Tipping containers slightly can help with load stability during stacking or unstacking. Hydraulic cylinders control the tilting operation, allowing the forklift operator to adjust the container’s angle as needed.

4. Side Shift:

Container handlers often feature side shift functionality, which allows the forks or attachment to move horizontally. Hydraulic cylinders are employed to control the side shift movement, enabling precise positioning of the forks or attachment when handling containers. This feature facilitates alignment with container corners and ensures secure engagement.

5. Attachment Control:

Container handling forklifts may have specialized attachments, such as container spreaders or twist locks, for secure container lifting and transport. Hydraulic cylinders play a vital role in controlling the movements of these attachments. They enable precise adjustments and alignment, ensuring proper engagement with the container and safe handling during loading and unloading operations.

In summary, hydraulic cylinders are extensively used in container handling forklifts for mast lifting, reach and extend operations, container tilting, side shift functionality, and attachment control. These cylinders provide the necessary power, control, and precision required to handle containers efficiently and safely in various container terminal and port environments.

forklift hydraulic cylinder

What are the components of a forklift hydraulic cylinder?

A forklift hydraulic cylinder consists of several components that work together to generate the necessary force for lifting loads. Here’s a breakdown of the key components:

1. Cylinder Barrel:

The cylinder barrel is a cylindrical tube that provides the housing for the other components of the hydraulic cylinder. It is typically made of high-strength steel or other durable materials to withstand the hydraulic forces.

2. Piston:

The piston is a cylindrical component that fits inside the cylinder barrel. It divides the cylinder into two chambers and is responsible for transferring the hydraulic force. The piston is sealed against the cylinder barrel to prevent fluid leakage between the chambers.

3. Piston Rod:

The piston rod extends from the piston and protrudes out of the cylinder barrel. It is connected to the load-bearing structure of the forklift, such as the mast assembly. The piston rod transmits the force generated by the hydraulic fluid to lift and lower the loads.

4. Seals:

Seals are essential components that prevent hydraulic fluid leakage and maintain the pressure within the cylinder. They are typically made of rubber or other elastomeric materials and are positioned at various points of the cylinder, such as around the piston and piston rod.

5. Inlet and Outlet Ports:

The hydraulic cylinder has inlet and outlet ports that allow the hydraulic fluid to enter and exit the cylinder. The inlet port is connected to the hydraulic system’s control valves and hoses, delivering pressurized fluid into the cylinder. The outlet port allows the fluid to flow out of the cylinder when the load is being lowered.

6. Mounting and Connection Components:

To integrate the hydraulic cylinder into the forklift’s hydraulic system, various mounting and connection components are used. These can include brackets, pins, clevises, and other fittings that secure and connect the cylinder to the forklift’s structure.

Each of these components plays a crucial role in the operation of the forklift hydraulic cylinder. The cylinder barrel provides the housing, the piston and piston rod generate the force, seals prevent fluid leakage, and the inlet and outlet ports facilitate the flow of hydraulic fluid. The mounting and connection components ensure proper integration into the forklift.

In summary, the components of a forklift hydraulic cylinder include the cylinder barrel, piston, piston rod, seals, inlet and outlet ports, and various mounting and connection components. Together, these components enable the hydraulic cylinder to generate the force necessary for lifting and lowering loads in a forklift.

China Good quality Cat Excavator Hydraulic Oil Cylinder Arm Boom Bucket Cylinder Hydraulic Cylinder for Cat E320d/E323D E320gc E320d2 Series   vacuum pump ac system	China Good quality Cat Excavator Hydraulic Oil Cylinder Arm Boom Bucket Cylinder Hydraulic Cylinder for Cat E320d/E323D E320gc E320d2 Series   vacuum pump ac system
editor by CX 2023-12-18